Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Mater ; : e2314271, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38569202

RESUMEN

Transition metal chalcogenides (TMCs) emerge as promising anode materials for sodium-ion batteries (SIBs), heralding a new era of energy storage solutions. Despite their potential, the mechanisms underlying their performance enhancement and susceptibility to failure in ether-based electrolytes remain elusive. This study delves into these aspects, employing CoS2 electrodes as a case in point to elucidate the phenomena. The investigation reveals that CoS2 undergoes a unique irreversible and progressive solid-liquid-solid phase transition from its native state to sodium polysulfides (NaPSs), and ultimately to a Cu1.8S/Co composite, accompanied by a gradual morphological transformation from microspheres to a stable 3D porous architecture. This reconstructed 3D porous structure is pivotal for its exceptional Na+ diffusion kinetics and resilience to cycling-induced stress, being the main reason for ultrastable cycling and ultrahigh rate capability. Nonetheless, the CoS2 electrode suffers from an inevitable cycle life termination due to the microshort-circuit induced by Na metal corrosion and separator degradation. Through a comparative analysis of various TMCs, a predictive framework linking electrode longevity is established to electrode potential and Gibbs free energy. Finally, the cell failure issue is significantly mitigated at a material level (graphene encapsulation) and cell level (polypropylene membrane incorporation) by alleviating the NaPSs shuttling and microshort-circuit.

2.
Nanomaterials (Basel) ; 14(6)2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38535660

RESUMEN

Many studies have been conducted on the microbial reduction of Pd (II) to palladium nanoparticles (Pd-NPs) due to the environmental friendliness, low cost, and the decreased toxicity of Pd (II) ions. In this study, we investigate the reduction mechanism of Pd (II) by Bacillus megaterium Y-4 through proteomics. The data are available via ProteomeXchange with identifier PXD049711. Our results revealed that B. megaterium Y-4 may use the endogenous electron donor (NAD(P)H) generated by nirB, tdh, and fabG and reductase to reduce Pd (II) to Pd-NPs. The expression levels of fabG, tdh, gudB, and rocG that generate NAD(P)H were further increased, and the number of reduced Pd-NPs was further increased with the exogenous electron donor sodium formate. Endogenous electron mediators such as quinones and flavins in B. megaterium Y-4 can further enhance Pd (II) reduction. The findings provided invaluable information regarding the reduction mechanism of Pd (II) by B. megaterium Y-4 at the proteome level.

3.
Plant J ; 104(2): 522-531, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32744366

RESUMEN

Root microbiomes are established through selective recruitment by host plants from pools of potential partners. However, the assembly rules of root microbiomes remain unclear. To elucidate (i) the effects of host plant phylogeny on root microbiome assembly and (ii) which microbial groups affect differences in root microbiome assemblies, the structures of bacterial and fungal root microbiomes from 20 cultivated angiosperms were compared. Surface-sterilized seeds from each species were sown in identical soil, and DNA was extracted from the plant roots after 7-8 weeks. The bacterial (16S rRNA) and fungal (ITS) communities were then examined using Illumina MiSeq. The phylogenetic distances of host plants and assembly dissimilarities of bacterial microbiomes, but not of fungal ones, were significantly correlated, as were the topologies of the host plant phylogenetic tree and the community dissimilarity tree, thereby confirming the phylogenetic conservation of bacterial root microbiomes. Furthermore, host plant phylogeny mainly affected only a few specific bacterial lineages, including the Betaproteobacteria, Gammaproteobacteria, and Chloroflexi. Burkholderia (Betaproteobacteria) taxa were more abundant in monocots than in dicots, whereas Streptomyces (Actinobacteria) taxa were less abundant. These findings suggest that bacterial root microbiomes have significantly contributed to the functional divergence of angiosperms at higher taxonomic levels.


Asunto(s)
Magnoliopsida/microbiología , Microbiota/genética , Filogenia , Raíces de Plantas/microbiología , Microbiología del Suelo , Bacterias/genética , Hongos/genética , Magnoliopsida/genética
4.
PLoS One ; 13(9): e0204085, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30248134

RESUMEN

Soil productivity is strongly influenced by the activities of microbial communities. However, it is not well understood how community structure, including its richness, mass, and composition, influences soil functions. We investigated the relationships between soil productivity and microbial communities in unfertilized arable soils extending over 1000 km in eastern Japan. Soil properties, including C turnover rate, N mineralization rate, microbial C, and various soil chemical properties, were measured. Soil bacterial and fungal communities were analyzed by Illumina's MiSeq using 16S rRNA and ITS regions. In addition, root microbial communities from maize grown in each soil were also investigated. Soil bacterial communities shared many operational taxonomic units (OTUs) among farms. An ordination plot based on correspondence analysis revealed convergent distribution of soil bacterial communities across the farms, which seemed to be a result of similar agricultural management practices. Although fungal communities showed lower richness and a lower proportion of shared OTUs than bacterial communities, community structure between the farms tended to be convergent. On the other hand, root communities had lower richness and a higher abundance of specific taxa than the soil communities. Two soil functions, decomposition activity and soil productivity, were extracted by principal component analysis (PCA) based on eight soil properties. Soil productivity correlated with N mineralization rate, P2O5, and maize growth, but not with decomposition activity, which is characterized by C turnover rate, soil organic C, and microbial mass. Soil productivity showed a significant association with community composition, but not with richness and mass of soil microbial communities. Soil productivity also correlated with the abundance of several specific taxa, both in bacteria and fungi. Root communities did not show any clear correlations with soil productivity. These results demonstrate that community composition and abundance of soil microbial communities play important roles in determining soil productivity.


Asunto(s)
Bacterias/genética , Fertilizantes , Hongos/genética , Microbiología del Suelo , Suelo/química , Análisis de Varianza , Biodiversidad , Carbono/análisis , Granjas , Geografía , Japón , Microbiota , Nitrógeno/análisis , Filogenia , Análisis de Componente Principal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...