Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Virulence ; 15(1): 2356692, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38797966

RESUMEN

The increasing antibiotic resistance poses a significant global health challenge, threatening our ability to combat infectious diseases. The phenomenon of collateral sensitivity, whereby resistance to one antibiotic is accompanied by increased sensitivity to another, offers potential avenues for novel therapeutic interventions against infections unresponsive to classical treatments. In this study, we elucidate the emergence of tobramycin (TOB)-resistant small colony variants (SCVs) due to mutations in the hemL gene, which render S. Typhimurium more susceptible to nitrofurantoin (NIT). Mechanistic studies demonstrate that the collateral sensitivity in TOB-resistant S. Typhimurium SCVs primarily stems from disruptions in haem biosynthesis. This leads to dysfunction in the electron transport chain (ETC) and redox imbalance, ultimately inducing lethal accumulation of reactive oxygen species (ROS). Additionally, the upregulation of nfsA/B expressions facilitates the conversion of NIT prodrug into its active form, promoting ROS-mediated bacterial killing and contributing to this collateral sensitivity pattern. Importantly, alternative NIT therapy demonstrates a significant reduction of bacterial load by more than 2.24-log10 cfu/g in the murine thigh infection and colitis models. Our findings corroborate the collateral sensitivity of S. Typhimurium to nitrofurans as a consequence of evolving resistance to aminoglycosides. This provides a promising approach for treating infections due to aminoglycoside-resistant strains.


Asunto(s)
Antibacterianos , Nitrofurantoína , Salmonella typhimurium , Tobramicina , Nitrofurantoína/farmacología , Animales , Salmonella typhimurium/efectos de los fármacos , Salmonella typhimurium/genética , Tobramicina/farmacología , Ratones , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana , Farmacorresistencia Bacteriana/genética , Mutación , Femenino , Especies Reactivas de Oxígeno/metabolismo , Infecciones por Salmonella/microbiología , Infecciones por Salmonella/tratamiento farmacológico , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
2.
Front Mol Neurosci ; 17: 1366855, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38685914

RESUMEN

As wireless communication devices gain popularity, concerns about the potential risks of environmental exposure to complex frequency electromagnetic radiation (EMR) on mental health have become a public health issue. Historically, EMR research has predominantly focused on single- frequency electromagnetic waves, neglecting the study of multi-frequency electromagnetic waves, which more accurately represent everyday life. To address these concerns, our study compared the emotional effects of single-frequency and dual-frequency EMR while exploring potential molecular mechanisms and intervention targets. Our results revealed that single-frequency EMR at 2.65 or 0.8 GHz did not induce anxiety-like behavior in mice. However, exposure to dual-frequency EMR at 2.65/0.8 GHz significantly led to anxiety-like behavior in mice. Further analysis of mouse sera revealed substantial increases in corticosterone and corticotrophin releasing hormone levels following exposure to 2.65/0.8 GHz EMR. Transcriptome sequencing indicated a significant decrease in the expression of Cnr1, encoding cannabinoid receptor 1 Type (CB1R), in the cerebral. This finding was consistently verified through western blot analysis, revealing a substantial reduction in CB1R content. Additionally, a significant decrease in the endocannabinoid 2-arachidonoylglycerol was observed in the cerebral cortex. Remarkably, administering the cannabinoid receptor agonist Win55-212-2 significantly alleviated the anxiety-like behavior, and the cannabinoid receptor antagonist AM251 effectively counteracted the anti-anxiety effects of Win55-212-2. In summary, our research confirmed that dual-frequency EMR is more likely to induce anxiety-like behavior in mice than single-frequency EMR, with implications for the hypothalamic-pituitary-adrenal axis and the endocannabinoid system. Furthermore, our findings suggest that Win55-212-2 may represent a novel avenue for researching and developing anti-EMR drugs.

3.
J Glob Antimicrob Resist ; 36: 36-40, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38072241

RESUMEN

OBJECTIVES: Aquatic ecosystems serve as a dissemination pathway and a reservoir of both antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). This study aimed to determine the prevalence of colistin-resistant mcr-like genes in Enterobacteriales in aquatic products, which may be contribute to the transfer of ARGs in water environments. METHODS: The mcr-1-positive Escherichia coli were recovered from 123 freshwater fish and 34 cultured crocodile cecum samples from 10 farmers' markets in Guangdong, China. Minimum inhibitory concentration (MIC) was determined using the agar dilution method. Genotyping was performed using pulsed-field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST). Conjugation assay was carried out to investigate the transferability of mcr-1. Genomic information was obtained by whole genome sequencing (WGS) and bioinformatic analysis. RESULTS: Forty-four mcr-1 positive isolates showed co-resistance to tetracycline, trimethoprim/sulfamethoxazole, and gentamicin, while they were all sensitive to tigecycline, meropenem, and amikacin. They were typed into sixteen PFGE clusters. ST10 and ST117 were the most popular sequence types, followed by ST1114. S1-PFGE verified the presence of the mcr-1 gene on plasmids in sizes of ∼60 kb (n = 1) and ∼240 kb (n = 3). Whole genome sequencing-based analysis identified mcr-1 integrated in IncHI2 plasmid (n = 3), IncI2 plasmid (n = 2), and bacterial chromosome in two copies (n = 1). In addition to mcr-1, they carried several other antibiotic resistance genes, such as blaCTX-M-14, fosA3, and aac(6')-Ib-cr. CONCLUSION: These data suggest that aquatic products are an important antibiotic resistance reservoir and highlight possible risks regarding food safety.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Animales , Tipificación de Secuencias Multilocus , Proteínas de Escherichia coli/genética , Antagonistas de Receptores de Angiotensina , Ecosistema , Inhibidores de la Enzima Convertidora de Angiotensina , Antibacterianos/farmacología
4.
Microbiol Spectr ; 11(3): e0030923, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37154736

RESUMEN

Streptococcus suis is a zoonotic pathogen that causes disease in humans after exposure to infected pigs or pig-derived food products. In this study, we examined the serotype distribution, antimicrobial resistance phenotypes and genotypes, integrative and conjugative elements (ICEs), and associated genomic environments of S. suis isolates from humans and pigs in China from 2008 to 2019. We identified isolates of 13 serotypes, predominated by serotype 2 (40/96; 41.7%), serotype 3 (10/96; 10.4%), and serotype 1 (6/96; 6.3%). Whole-genome sequencing analysis revealed that these isolates possessed 36 different sequence types (STs), and ST242 and ST117 were the most prevalent. Phylogenetic analysis revealed possible animal and human clonal transmission, while antimicrobial susceptibility testing indicated high-level resistance to macrolides, tetracyclines, and aminoglycosides. These isolates carried 24 antibiotic resistance genes (ARGs) that conferred resistance to 7 antibiotic classes. The antibiotic resistance genotypes were directly correlated with the observed phenotypes. We also identified ICEs in 10 isolates, which were present in 4 different genetic environments and possessed differing ARG combinations. We also predicted and confirmed by PCR analysis the existence of a translocatable unit (TU) in which the oxazolidinone resistance gene optrA was flanked by IS1216E elements. One-half (5/10) of the ICE-carrying strains could be mobilized by conjugation. A comparison of the parental recipient with an ICE-carrying transconjugant in a mouse in vivo thigh infection model indicated that the ICE strain could not be eliminated with tetracycline treatment. S. suis therefore poses a significant challenge to global public health and requires continuous monitoring, especially for the presence of ICEs and associated ARGs that can be transferred via conjugation. IMPORTANCE S. suis is a serious zoonotic pathogen. In this study, we investigated the epidemiological and molecular characteristics of 96 S. suis isolates from 10 different provinces of China from 2008 to 2019. A subset of these isolates (10) carried ICEs that were able to be horizontally transferred among isolates of different S. suis serotypes. A mouse thigh infection model revealed that ICE-facilitated ARG transfer promoted resistance development. S. suis requires continuous monitoring, especially for the presence of ICEs and associated ARGs that can be transferred via conjugation.


Asunto(s)
Oxazolidinonas , Streptococcus suis , Humanos , Porcinos , Animales , Ratones , Streptococcus suis/genética , Filogenia , Farmacorresistencia Microbiana , Antibacterianos/farmacología
6.
Brain Res ; 1679: 134-143, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29180226

RESUMEN

The popularization of microwave raised concerns about its influence on health including cognitive function which is associated greatly with dendritic spines plasticity. SNK-SPAR is a molecular pathway for neuronal homeostatic plasticity during chronically elevated activity. In this study, Wistar rats were exposed to microwaves (30 mW/cm2 for 6 min, 3 times/week for 6 weeks). Spatial learning and memory function, distribution of dendritic spines, ultrastructure of the neurons and their dendritic spines in hippocampus as well as the related critical molecules of SNK-SPAR pathway were examined at different time points after microwave exposure. There was deficiency in spatial learning and memory in rats, loss of spines in granule cells and shrinkage of mature spines in pyramidal cells, accompanied with alteration of ultrastructure of hippocampus neurons. After exposure to 30 mW/cm2 microwave radiation, the up-regulated SNK induced decrease of SPAR and PSD-95, which was thought to cause the changes mentioned above. In conclusion, the microwave radiation led to shrinkage and even loss of dendritic spines in hippocampus by SNK-SPAR pathway, resulting in the cognitive impairments.


Asunto(s)
Espinas Dendríticas/efectos de la radiación , Proteínas Activadoras de GTPasa/metabolismo , Hipocampo/citología , Microondas/efectos adversos , Neuronas/ultraestructura , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/efectos de la radiación , Animales , Espinas Dendríticas/ultraestructura , Homólogo 4 de la Proteína Discs Large/genética , Homólogo 4 de la Proteína Discs Large/metabolismo , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/ultraestructura , Hipocampo/efectos de la radiación , Masculino , Aprendizaje por Laberinto/efectos de la radiación , Microscopía Electrónica de Transmisión , Neuronas/efectos de la radiación , Proteínas Serina-Treonina Quinasas/genética , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Tinción con Nitrato de Plata , Sinapsis/metabolismo , Sinapsis/efectos de la radiación , Sinapsis/ultraestructura , Factores de Tiempo , Regulación hacia Arriba/efectos de la radiación
7.
Biomed Environ Sci ; 30(12): 927-931, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29335064

RESUMEN

Little information is available about the effects of exposure to pulsed microwaves on neuronal Ca2+ signaling under non-thermal conditions. In this study, rat pheochromocytoma (PC12) cells were exposed to pulsed microwaves for 6 min at a specific absorption rate (SAR) of 4 W/kg to assess possible real-time effects. During microwave exposure, free calcium dynamics in the cytosol, mitochondria, and nucleus of cells were monitored by time-lapse microfluorimetry using a genetically encoded calcium indicator (ratiometric-pericam, ratiometric-pericam-mt, and ratiometric-pericam-nu). We established a waveguide-based real-time microwave exposure system under accurately controlled environmental and dosimetric conditions and found no significant changes in the cytosolic, mitochondrial, or nuclear calcium levels in PC12 cells. These findings suggest that no dynamic changes occurred in [Ca2+]c, [Ca2+]m, or [Ca2+]n of PC12 cells at the non-thermal level.


Asunto(s)
Calcio/metabolismo , Núcleo Celular/efectos de la radiación , Citosol/efectos de la radiación , Microondas , Mitocondrias/efectos de la radiación , Animales , Núcleo Celular/metabolismo , Citosol/metabolismo , Microscopía Confocal , Mitocondrias/metabolismo , Células PC12 , Ratas
8.
Mol Neurobiol ; 53(4): 2100-11, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-25917873

RESUMEN

Microwave radiation has been implicated in cognitive dysfunction and neuronal injury in animal models and in human investigations; however, the mechanism of these effects is unclear. In this study, single nucleotide polymorphism (SNP) sites in the rat GRIN2B promoter region were screened. The associations of these SNPs with microwave-induced rat brain dysfunction and with rat pheochromocytoma-12 (PC12) cell function were investigated. Wistar rats (n = 160) were exposed to microwave radiation (30 mW/cm(2) for 5 min/day, 5 days/week, over a period of 2 months). Screening of the GRIN2B promoter region revealed a stable C-to-T variant at nucleotide position -217 that was not induced by microwave exposure. The learning and memory ability, amino acid contents in the hippocampus and cerebrospinal fluid, and NR2B expression were then investigated in the different genotypes. Following microwave exposure, NR2B protein expression decreased, while the Glu contents in the hippocampus and CSF increased, and memory impairment was observed in the TT genotype but not the CC and CT genotypes. In PC12 cells, the effects of the T allele were more pronounced than those of the C allele on transcription factor binding ability, transcriptional activity, NR2B mRNA, and protein expression. These effects may be related to the detrimental role of the T allele and the protective role of the C allele in rat brain function and PC12 cells exposed to microwave radiation.


Asunto(s)
Microondas , Neuronas/patología , Regiones Promotoras Genéticas , Subunidades de Proteína/genética , Receptores de N-Metil-D-Aspartato/genética , Animales , Secuencia de Bases , Encéfalo/patología , Proliferación Celular , Frecuencia de los Genes/genética , Variación Genética , Genotipo , Masculino , Células PC12 , Subunidades de Proteína/metabolismo , Ratas , Ratas Wistar
9.
Physiol Behav ; 140: 236-46, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25542888

RESUMEN

The increased use of microwaves raises concerns about its impact on health including cognitive function in which neurotransmitter system plays an important role. In this study, we focused on the serotonin system and evaluated the long term effects of chronic microwave radiation on cognition and correlated items. Wistar rats were exposed or sham exposed to 2.856GHz microwaves with the average power density of 5, 10, 20 or 30mW/cm(2) respectively for 6min three times a week up to 6weeks. At different time points after the last exposure, spatial learning and memory function, morphology structure of the hippocampus, electroencephalogram (EEG) and neurotransmitter content (amino acid and monoamine) of rats were tested. Above results raised our interest in serotonin system. Tryptophan hydroxylase 1 (TPH1) and monoamine oxidase (MAO), two important rate-limiting enzymes in serotonin synthesis and metabolic process respectively, were detected. Expressions of serotonin receptors including 5-HT1A, 2A, 2C receptors were measured. We demonstrated that chronic exposure to microwave (2.856GHz, with the average power density of 5, 10, 20 and 30mW/cm(2)) could induce dose-dependent deficit of spatial learning and memory in rats accompanied with inhibition of brain electrical activity, the degeneration of hippocampus neurons, and the disturbance of neurotransmitters, among which the increase of 5-HT occurred as the main long-term change that the decrease of its metabolism partly contributed to. Besides, the variations of 5-HT1AR and 5-HT2CR expressions were also indicated. The results suggested that in the long-term way, chronic microwave exposure could induce cognitive deficit and 5-HT system may be involved in it.


Asunto(s)
Encéfalo/metabolismo , Encéfalo/efectos de la radiación , Trastornos del Conocimiento/etiología , Microondas/efectos adversos , Serotonina/metabolismo , Animales , Encéfalo/patología , Ondas Encefálicas/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Electroencefalografía , Masculino , Aprendizaje por Laberinto/efectos de la radiación , Degeneración Nerviosa/etiología , Neurotransmisores/metabolismo , Ratas , Ratas Wistar , Tiempo de Reacción/efectos de la radiación , Receptores de Serotonina/genética , Receptores de Serotonina/metabolismo , Natación/psicología , Tiempo , Factores de Tiempo , Triptófano Hidroxilasa/metabolismo
10.
Anal Bioanal Chem ; 404(1): 69-78, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22706401

RESUMEN

There has been growing public concern regarding exposure to microwave fields as a potential human health hazard. This study aimed to identify sensitive biochemical indexes for the detection of injury induced by microwave exposure. Male Wistar rats were exposed to microwaves for 6 min per day, 5 days per week over a period of 1 month at an average power density of 5 mW/cm(2) (specific absorption rate of 2.1 W/kg). Urine specimens were collected over 24 h in metabolic cages at 7 days, 21 days, 2 months, and 6 months after exposure. (1)H NMR spectroscopy data were analyzed using multivariate statistical techniques. Urine metabolic profiles of rats after long-term microwave exposure were significantly differentiated from those of sham-treated controls using principal component analysis or partial least squares discriminant analysis. Significant differences in low molecular weight metabolites (acetate, succinate, citrate, ketoglutarate, glucose, taurine, phenylalanine, tyrosine, and hippurate) were identified in the 5 mW/cm(2) microwave exposure group compared with the sham-treated controls at 7 days, 21 days, and 2 months. Metabolites returned to normal levels by 6 months after exposure. These data indicated that these metabolites were related to the perturbations of energy metabolism particularly in the tricarboxylic acid cycle, and the metabolism of amino acids, monoamines, and choline in urine represent potential indexes for the detection of injury induced by long-term microwave exposure.


Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Metaboloma , Metabolómica/métodos , Microondas/efectos adversos , Orina/química , Animales , Humanos , Masculino , Ratas , Ratas Wistar , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...