Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Med Chem ; 65(20): 13681-13691, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-36257066

RESUMEN

Fatty acid synthase (FASN), a sole cytosolic enzyme responsible for de-novo lipid synthesis, is overexpressed in cancer but not in normal non-lipogenic tissues. FASN has been targeted, albeit no such inhibitor has been approved. Proton pump inhibitors (PPIs), approved for digestive disorders, were found to inhibit FASN with anticancer activities in attempting to repurpose Food and Drug Administration-approved drugs. Indeed, PPI usage benefited breast cancer patients and increased their response rate. Due to structural similarity, we thought that their metabolites might extend anticancer effects of PPIs by inhibiting FASN. Here, we tested this hypothesis and found that 5-hydroxy lansoprazole sulfide (5HLS), the end lansoprazole metabolite, was more active than lansoprazole in inhibiting FASN function and regulation of NHEJ repair of oxidative DNA damage via PARP1. Surprisingly, 5HLS inhibits the enoyl reductase, whereas lansoprazole inhibits the thioesterase of FASN. Thus, PPI metabolites may contribute to the lasting anticancer effects of PPIs by inhibiting FASN.


Asunto(s)
Inhibidores de la Bomba de Protones , Neoplasias de la Mama Triple Negativas , Humanos , Lansoprazol/farmacología , Lansoprazol/uso terapéutico , Inhibidores de la Bomba de Protones/farmacología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Oxidorreductasas , Ácido Graso Sintasas/metabolismo , Sulfuros/farmacología , Lípidos
2.
Clin Cancer Res ; 28(15): 3235-3241, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35551360

RESUMEN

PURPOSE: The PI3K pathway is dysregulated in the majority of triple-negative breast cancers (TNBC), yet single-agent inhibition of PI3K has been ineffective in TNBC. PI3K inhibition leads to an immediate compensatory upregulation of the Wnt pathway. Dual targeting of both pathways is highly synergistic against TNBC models in vitro and in vivo. We initiated a phase I clinical trial combining gedatolisib, a pan-class I isoform PI3K/mTOR inhibitor, and cofetuzumab pelidotin, an antibody-drug conjugate against the cell-surface PTK7 protein (Wnt pathway coreceptor) with an auristatin payload. PATIENTS AND METHODS: Participants (pt) had metastatic TNBC or estrogen receptor (ER) low (ER and PgR < 5%, HER2-negative) breast cancer, and had received at least one prior chemotherapy for advanced disease. The primary objective was safety. Secondary endpoints included overall response rate (ORR), clinical benefit at 18 weeks (CB18), progression-free survival (PFS), and correlative analyses. RESULTS: A total of 18 pts were enrolled in three dose cohorts: gedatolisib 110 mg weekly + cofetuzumab pelidotin 1.4 mg/kg every 3 weeks (n = 4), 180 mg + 1.4 mg/kg (n = 3), and 180 mg + 2.8 mg/kg (n = 11). Nausea, anorexia, fatigue, and mucositis were common but rarely reached ≥grade 3 severity. Myelosuppression was uncommon. ORR was 16.7% (3/18). An additional 3 pts had stable disease (of these 2 had stable disease for >18 weeks); CB18 was 27.8%. Median PFS was 2.0 months (95% confidence interval for PFS: 1.2-6.2). Pts with clinical benefit were enriched with genomic alterations in the PI3K and PTK7 pathways. CONCLUSIONS: The combination of gedatolisib + cofetuzumab pelidotin was well tolerated and demonstrated promising clinical activity. Further investigation of this drug combination in metastatic TNBC is warranted.


Asunto(s)
Antineoplásicos , Inmunoconjugados , Neoplasias de la Mama Triple Negativas , Antineoplásicos/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Moléculas de Adhesión Celular , Humanos , Inmunoconjugados/uso terapéutico , Morfolinas , Fosfatidilinositol 3-Quinasas , Inhibidores de las Quinasa Fosfoinosítidos-3 , Proteínas Tirosina Quinasas Receptoras , Receptores de Estrógenos , Triazinas , Neoplasias de la Mama Triple Negativas/patología
3.
Cancer Lett ; 509: 1-12, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33813001

RESUMEN

Human fatty acid synthase (FASN) is the sole cytosolic enzyme responsible for de novo lipid synthesis. FASN is essential for cancer cell survival and contributes to drug and radiation resistance by up-regulating DNA damage repair but not required for most non-lipogenic tissues. Thus, FASN is an attractive target for drug discovery. However, despite decades of effort in targeting FASN, no FASN inhibitors have been approved due to poor pharmacokinetics or toxicities. Here, we show that the FDA-approved proton pump inhibitors (PPIs) effectively inhibit FASN and suppress breast cancer cell survival. PPI inhibition of FASN leads to suppression of non-homologous end joining repair of DNA damages by reducing FASN-mediated PARP1 expression, resulting in apoptosis from oxidative DNA damages and sensitization of cellular resistance to doxorubicin and ionizing radiation. Mining electronic medical records of 6754 breast cancer patients showed that PPI usage significantly increased overall survival and reduced disease recurrence of these patients. Hence, PPIs may be repurposed as anticancer drugs for breast cancer treatments by targeting FASN to overcome drug and radiation resistance.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Daño del ADN , Reparación del ADN por Unión de Extremidades/efectos de los fármacos , Doxorrubicina/farmacología , Resistencia a Antineoplásicos , Inhibidores Enzimáticos/farmacología , Acido Graso Sintasa Tipo I/antagonistas & inhibidores , Lansoprazol/farmacología , Inhibidores de la Bomba de Protones/farmacología , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/enzimología , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Quimioradioterapia , Minería de Datos , Sinergismo Farmacológico , Registros Electrónicos de Salud , Acido Graso Sintasa Tipo I/genética , Acido Graso Sintasa Tipo I/metabolismo , Femenino , Humanos , Células MCF-7 , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Tolerancia a Radiación
4.
Front Cell Dev Biol ; 8: 753, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32974334

RESUMEN

Translation initiation in protein synthesis regulated by eukaryotic initiation factors (eIFs) is a crucial step in controlling gene expression. eIF3a has been shown to regulate protein synthesis and cellular response to treatments by anticancer agents including cisplatin by regulating nucleotide excision repair. In this study, we tested the hypothesis that eIF3a regulates the synthesis of proteins important for the repair of double-strand DNA breaks induced by ionizing radiation (IR). We found that eIF3a upregulation sensitized cellular response to IR while its downregulation caused resistance to IR. eIF3a increases IR-induced DNA damages and decreases non-homologous end joining (NHEJ) activity by suppressing the synthesis of NHEJ repair proteins. Furthermore, analysis of existing patient database shows that eIF3a expression associates with better overall survival of breast, gastric, lung, and ovarian cancer patients. These findings together suggest that eIF3a plays an important role in cellular response to DNA-damaging treatments by regulating the synthesis of DNA repair proteins and, thus, eIIF3a likely contributes to the outcome of cancer patients treated with DNA-damaging strategies including IR.

6.
Proc Natl Acad Sci U S A ; 113(45): E6965-E6973, 2016 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-27791122

RESUMEN

Fatty acid synthase (FASN), the sole cytosolic mammalian enzyme for de novo lipid synthesis, is crucial for cancer cell survival and associates with poor prognosis. FASN overexpression has been found to cause resistance to genotoxic insults. Here we tested the hypothesis that FASN regulates DNA repair to facilitate survival against genotoxic insults and found that FASN suppresses NF-κB but increases specificity protein 1 (SP1) expression. NF-κB and SP1 bind to a composite element in the poly(ADP-ribose) polymerase 1 (PARP-1) promoter in a mutually exclusive manner and regulate PARP-1 expression. Up-regulation of PARP-1 by FASN in turn increases Ku protein recruitment and DNA repair. Furthermore, lipid deprivation suppresses SP1 expression, which is able to be rescued by palmitate supplementation. However, lipid deprivation or palmitate supplementation has no effect on NF-κB expression. Thus, FASN may regulate NF-κB and SP1 expression using different mechanisms. Altogether, we conclude that FASN regulates cellular response against genotoxic insults by up-regulating PARP-1 and DNA repair via NF-κB and SP1.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...