Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38723743

RESUMEN

Ambient temperatures have great impacts on thermoregulation of small mammals. Brown adipose tissue (BAT), an obligative thermogenic tissue for small mammals, is localized not only in the interscapular depot (iBAT), but also in supraclavicular, infra/subscapular, cervical, paravertebral, and periaortic depots. The iBAT is known for its cold-induced thermogenesis, however, less has been paid attention to the function of BAT at other sites. Here, we investigated the function of BAT at different sites of the body during cold acclimation in a small rodent species. As expected, Brandt's voles (Lasiopodomys brandtii) consumed more food and reduced the body mass gain when they were exposed to cold. The voles increased resting metabolic rate and maintained a relatively lower body temperature in the cold (36.5 ± 0.27 °C) compared to those in the warm condition (37.1 ± 0.36 °C). During cold acclimation, the uncoupling protein 1 (UCP1) increased in aBAT (axillary), cBAT (anterior cervical), iBAT (interscapular), nBAT (supraclavicular), and sBAT (suprascapular). The levels of proliferating cell nuclear antigen (PCNA), a marker for cell proliferation, were higher in cBAT and iBAT in the cold than in the warm group. The pAMPK/AMPK and pCREB/CREB were increased in cBAT and iBAT during cold acclimation, respectively. These data indicate that these different sites of BAT play the cold-induced thermogenic function for small mammals.

2.
Insect Sci ; 2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38616579

RESUMEN

Sex pheromones, which consist of multiple components in specific ratios promote intraspecific sexual communications of insects. Plutella xylostella (L.) is a worldwide pest of cruciferous vegetables, the mating behavior of which is highly dependent on its olfactory system. Long trichoid sensilla on male antennae are the main olfactory sensilla that can sense sex pheromones. However, the underlying mechanisms remain unclear. In this study, 3 sex pheromone components from sex pheromone gland secretions of P. xylostella female adults were identified as Z11-16:Ald, Z11-16:Ac, and Z11-16:OH in a ratio of 9.4 : 100 : 17 using gas chromatography - mass spectrometry and gas chromatography with electroantennographic detection. Electrophysiological responses of 581 and 385 long trichoid sensilla of male adults and female adults, respectively, to the 3 components were measured by single sensillum recording. Hierarchical clustering analysis showed that the long trichoid sensilla were of 6 different types. In the male antennae, 52.32%, 5.51%, and 1.89% of the sensilla responded to Z11-16:Ald, Z11-16:Ac, and Z11-16:OH, which are named as A type, B type, and C type sensilla, respectively; 2.93% named as D type sensilla responded to both Z11-16:Ald and Z11-16:Ac, and 0.34% named as E type sensilla were sensitive to both Z11-16:Ald and Z11-16:OH. In the female antennae, only 7.53% of long trichoid sensilla responded to the sex pheromone components, A type sensilla were 3.64%, B type and C type sensilla were both 0.52%, D type sensilla were 1.30%, and 1.56% of the sensilla responded to all 3 components, which were named as F type sensilla. The responding long trichoid sensilla were located from the base to the terminal of the male antennae and from the base to the middle of the female antennae. The pheromone mixture (Z11-16:Ald : Z11-16:Ac : Z11-16:OH = 9.4 : 100 : 17) had a weakly repellent effect on female adults of P. xylostella. Our results lay the foundation for further studies on sex pheromone communications in P. xylostella.

3.
Insect Sci ; 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38485691

RESUMEN

The tobacco cutworm Spodoptera litura is one of the most destructive polyphagous crop pests. Olfaction and taste play a crucial role in its host plant selection and sexual communication, but the expression profile of chemosensory genes remains unclear. In this study, we identified 185 chemosensory genes from 7 organs in S. litura by transcriptome sequencing, of which 72 genes were published for the first time, including 27 odorant receptors (ORs), 26 gustatory receptors (GRs), 1 ionotropic receptor (IR), 16 odorant-binding proteins (OBPs), and 2 chemosensory proteins (CSPs). Phylogenetic analyses revealed that ORs, IRs, OBPs, and sensory neuron membrane proteins (SNMPs) were mainly expressed in antennae and sequence-conserved among Noctuidae species. The most differentially expressed genes (DEGs) between sexes were ORs and OBPs, and no DEGs were found in GRs. GR transcripts were enriched in proboscis, and the expression of sugar receptors was the highest. Carbon dioxide receptors, sugar receptor-SliuGR6, and bitter GRs-SlituGR43 and SlituGR66 had higher sequence identities between Noctuidae species. CSPs were broadly expressed in various organs, and SlituCSP13 was a DEG in adult antennae. The functional analysis in the Drosophila OR67d expression system found that SlituOR50, a receptor highly expressed in female antennae, is selectively tuned to farnesyl acetate. The results provide a solid foundation for understanding the molecular mechanisms by which chemosensory genes operate to elicit behavioral responses in polyphagous insects.

4.
Pest Manag Sci ; 80(3): 978-987, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37822037

RESUMEN

BACKGROUND: Omnivores, including humans, have an inborn tendency to avoid risky or non-nutritious foods. However, relatively little is known about how animals perceive and discriminate nutritious foods from risky substances. In this study, we explored the mechanism of feeding selection in Ostrinia furnacalis larvae, one of the most destructive pests to the maize crop. RESULTS: We identified a gustatory receptor, Gr43a, for feeding regulation in larvae of Ostrinia furnacalis, which highly expresses in the mouthparts of the first- (the period of just hatching out from eggs) and fifth-instar larvae (the period of gluttony). The Gr43a regulates foraging plasticity by discriminating sorbitol, a nonsweet nutritious substance, and sucralose, a sweet non-nutritious substance through the labra of mouthparts, while it differentiates fructose/sucrose and sucralose via the sensilla styloconica of mouthparts. Specially, Gr43a responds to fructose and sucrose via the medial and lateral sensilla styloconica in O. furnacalis, respectively. Furthermore, Gr43a is negatively regulated by the neuropeptide F system, a homologous mammalian neuropeptide Y system. CONCLUSION: This study reveals a smart feeding strategy for animals to meet both nutritional needs and sweet gratification, and offers an insight into complex feeding selections dependent on food resources in the surrounding environment. © 2023 Society of Chemical Industry.


Asunto(s)
Proteínas de Drosophila , Mariposas Nocturnas , Animales , Humanos , Larva/fisiología , Mariposas Nocturnas/fisiología , Fructosa , Sacarosa , Mamíferos
5.
Artículo en Inglés | MEDLINE | ID: mdl-38114856

RESUMEN

In this paper, we take a historical perspective by going back to Verschaffelt's landmark study published in 1910, in which he found that glucosinolates were used as token stimuli by larvae of Pieris butterflies, specialist feeders on plants in the family Brassicaceae. This classic discovery provided key evidence for Fraenkel (Science 129:1466-1470, 1959) to elaborate on the function of secondary plant substances and for Ehrlich and Raven (Evolution 18:586-608, 1964) to put forward the hypothesis of insect-plant coevolution. The discovery by Schoonhoven (Kon Nederl Akad Wetensch Amsterdam Proc Ser C70:556-568, 1967) of taste neurons highly sensitive to glucosinolates in Pieris brassicae was an important milestone in elucidating the chemosensory basis of host-plant specialization. The molecular basis of glucosinolate sensitivity was elucidated recently (Yang et al., PLoS Genet 17, 2021) paving the way to unravel the evolution of gustatory receptors tuned to glucosinolates that are crucial for host-plant selection of Pieris butterflies. We propose a hypothetical model for the evolution of labeled-line neurons tuned to token stimuli.


Asunto(s)
Mariposas Diurnas , Animales , Mariposas Diurnas/fisiología , Glucosinolatos , Insectos , Larva
6.
J Agric Food Chem ; 71(49): 19408-19421, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38039319

RESUMEN

Olfaction plays an instrumental role in host plant selection by phytophagous insects. Helicoverpa assulta and Helicoverpa armigera are two closely related moth species with different host plant ranges. In this study, we first comparatively analyzed the function of 11 female-biased odorant receptors (ORs) and their orthologs in the two species by the Drosophila T1 neuron expression system and then examined the electroantennography responses of the two species to the most effective OR ligands. Behavioral assays using a Y-tube olfactometer indicate that guaiene, the primary ligand of HassOR21-2 and HarmOR21-2, only attracts the females, while benzyl acetone, the main ligand of HassOR35 and HarmOR35, attracts both sexes of the two species. Oviposition preference experiments further confirm that guaiene and benzyl acetone are potent oviposition attractants for the mated females of both species. These findings deepen our understanding of the olfactory coding mechanisms of host plant selection in herbivorous insects and provide valuable attractants for managing pest populations.


Asunto(s)
Mariposas Nocturnas , Receptores Odorantes , Atractivos Sexuales , Femenino , Animales , Masculino , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Ligandos , Mariposas Nocturnas/metabolismo , Atractivos Sexuales/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo
7.
Pest Manag Sci ; 79(12): 5270-5282, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37602963

RESUMEN

BACKGROUND: The diamondback moth, Plutella xylostella, has developed resistance to almost all insecticides used for its control. The 'push-pull' method has been shown as an effective control strategy to address this resistance challenge of P. xylostella. The key focus of the strategy is the identification of attractive or repellent volatile components. The aim of this study was to identify attractive volatile compounds released from host plants. Identified compounds were applied in the biological control of this pest. RESULTS: Nine active compounds released into the headspace of seven cruciferous plant species were identified using gas chromatography-electroantennographic detection and gas chromatography-mass spectrometry. Electroantennographic detection-active compounds included five green leaf volatiles (hexanal, trans-2-hexen-1-ol, cis-3-hexen-1-ol, cis-3-hexenyl acetate, and 1-penten-3-ol), three isothiocyanates (isopropyl isothiocyanate, allyl isothiocyanate, and butyl isothiocyanate), and nonanal. Except for nonanal, all the identified green leaf volatiles and isothiocyanates elicited strong electrophysiological and behavioral responses in P. xylostella. The strongest attractive compounds, trans-2-hexen-1-ol and isopropyl isothiocyanate, were further evaluated in oviposition and field-trapping assays. Results showed that they both lured female moths to lay eggs, and were highly attractive to P. xylostella adults in field, especially when used in combination with yellow and green sticky boards. However, a blend of the two compounds showed no synergistic effect, but rather an antagonistic effect. CONCLUSIONS: Green leaf volatiles and isothiocyanates were identified as key olfactory cues for host selection of P. xylostella. Trans-2- hexen-1-ol and isopropyl isothiocyanate were identified as candidate attractive compounds to serve in a 'push-pull' strategy for P. xylostella control. © 2023 Society of Chemical Industry.


Asunto(s)
Aldehídos , Mariposas Nocturnas , Animales , Femenino , Cromatografía de Gases y Espectrometría de Masas , Isotiocianatos/farmacología , Plantas
8.
Int J Mol Sci ; 24(11)2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37298074

RESUMEN

Heat sensation and tolerance are crucial for determining species' survival and distribution range of small mammals. As a member of the transmembrane proteins, transient receptor potential vanniloid 1 (TRPV1) is involved in the sensation and thermoregulation of heat stimuli; however, the associations between animal's heat sensitivity and TRPV1 in wild rodents are less studied. Here, we found that Mongolian gerbils (Meriones unguiculatus), a rodent species living in Mongolia grassland, showed an attenuated sensitivity to heat compared with sympatrically distributed mid-day gerbils (M. meridianus) based on a temperature preference test. To explain this phenotypical difference, we measured the TRPV1 mRNA expression of two gerbil species in the hypothalamus, brown adipose tissue, and liver, and no statistical difference was detected between two species. However, according to the bioinformatics analysis of TRPV1 gene, we identified two single amino acid mutations on two TRPV1 orthologs in these two species. Further Swiss-model analyses of two TRPV1 protein sequences indicated the disparate conformations at amino acid mutation sites. Additionally, we confirmed the haplotype diversity of TRPV1 in both species by expressing TRPV1 genes ectopicly in Escherichia coli system. Taken together, our findings supplemented genetic cues to the association between the discrepancy of heat sensitivity and the functional differentiation of TRPV1 using two wild congener gerbils, promoting the comprehension of the evolutionary mechanisms of the TRPV1 gene for heat sensitivity in small mammals.


Asunto(s)
Regulación de la Temperatura Corporal , Calor , Animales , Gerbillinae/metabolismo , Regulación de la Temperatura Corporal/genética , Aminoácidos/metabolismo , Variación Genética
9.
Curr Biol ; 33(2): 276-286.e5, 2023 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-36423638

RESUMEN

In addition to innate immunity in a physiological context, insects have evolved behavioral defenses against parasite attacks. Here, we report that Drosophila can sense the CFEM (common in fungal extracellular membrane) protein Mcdc9, which acts as a negative virulence factor of the entomopathogenic fungus Metarhizium robertsii. The individual deletions of 18 CFEM genes in Metarhizium followed by fly infection identified three null mutants that could kill the flies more quickly than the wild-type strain, among which Mcdc9 can coat fungal spores and interact with the fly chemosensory protein CheA75a. The deletion of Mcdc9 in the fungus or the knockdown of CheA75a in flies had a similar effect, in which a greater number of fungal spores were left on flies than on the respective controls after topical infection. Thus, similar to the accelerated death of the wild-type flies treated with ΔMcdc9, the CheA75aRNAi flies succumbed more quickly than the control insects topically challenged with the wild-type strain. The CheA75a gene is highly transcribed in fly legs and wings, and positive electrophysiological responses were evidenced in tarsal sensilla after stimulation with the Mcdc9 protein. The results imply that this CFEM protein could be sensed as a contact elicitor inducing the hygienic behavior of flies against fungal parasitic infection, which reveals a previously unsuspected mechanism of fungus-insect interactions.


Asunto(s)
Metarhizium , Parásitos , Enfermedades Parasitarias , Animales , Parásitos/metabolismo , Proteínas de la Membrana/genética , Insectos , Esporas Fúngicas/genética , Esporas Fúngicas/metabolismo , Proteínas Fúngicas/metabolismo , Drosophila/metabolismo , Metarhizium/genética
10.
Proc Natl Acad Sci U S A ; 119(49): e2215442119, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36442117

RESUMEN

Sex pheromones are pivotal for insect reproduction. However, the mechanism of sex pheromone communication remains enigmatic in hymenopteran parasitoids. Here we have identified the sex pheromone and elucidated the olfactory basis of sex pheromone communication in Campoletis chlorideae (Ichneumonidae), a solitary larval endoparasitoid of over 30 lepidopteran pests. Using coupled gas chromatography-electroantennogram detection, we identified two female-derived pheromone components, tetradecanal (14:Ald) and 2-heptadecanone (2-Hep) (1:4.6), eliciting strong antennal responses from males but weak responses from females. We observed that males but not females were attracted to both single components and the blend. The hexane-washed female cadavers failed to arouse males, and replenishing 14:Ald and 2-Hep could partially restore the sexual attraction of males. We further expressed six C. chlorideae male-biased odorant receptors in Drosophila T1 neurons and found that CchlOR18 and CchlOR47 were selectively tuned to 14:Ald and 2-Hep, respectively. To verify the biological significance of this data, we knocked down CchlOR18 and CchlOR47 individually or together in vivo and show that the attraction of C. chlorideae to their respective ligands was abolished. Moreover, the parasitoids defective in either of the receptors were less likely to court and copulate. Finally, we show that the sex pheromone and (Z)-jasmone, a potent female attractant, can synergistically affect behaviors of virgin males and virgin females and ultimately increase the parasitic efficiency of C. chlorideae. Our study provides new insights into the molecular mechanism of sex pheromone communication in C. chlorideae that may permit manipulation of parasitoid behavior for pest control.


Asunto(s)
Receptores Odorantes , Atractivos Sexuales , Masculino , Animales , Insectos , Comunicación , Feromonas , Drosophila
11.
PLoS Genet ; 18(10): e1010455, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36206313

RESUMEN

Many plant secondary substances are feeding deterrents for insects and play a key role in the selection of host plants. The taste sensilla of phytophagous insects contain gustatory sensory neurons sensitive to deterrents but the molecular basis of deterrent chemoreception remains unknown. We investigated the function of Gr180, the most highly expressed bitter gustatory receptor in the maxillary galea of Helicoverpa armigera larvae. Functional analyses using the Xenopus oocyte expression system and two-electrode voltage clamp revealed that the oocytes expressing Gr180 responded to coumarin. Tip recording results showed that the medial sensilla styloconica of the maxilla of fifth instar larvae exhibited electrophysiological responses to coumarin. Two-choice feeding bioassays confirmed that coumarin inhibited larval feeding. A homozygous mutant strain of H. armigera with truncated Gr180 proteins (Gr180-/-) was established using the CRISPR-Cas9 system. The responses of the medial sensilla styloconica in Gr180-/- to coumarin were almost abolished, and the responses to sinigrin and strychnine were also significantly decreased. Knockout of Gr180 alleviated the feeding deterrent effects of coumarin, sinigrin, and strychnine. Thus, we conclude that Gr180 is a receptor responding to coumarin,and also participates in sensing sinigrin and strychnine. These results enhance our understanding of the gustatory sensing mechanisms of phytophagous insects to deterrents.


Asunto(s)
Mariposas Nocturnas , Gusto , Animales , Larva/metabolismo , Gusto/genética , Estricnina/metabolismo , Estricnina/farmacología , Maxilar/metabolismo , Mariposas Nocturnas/genética , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Cumarinas/metabolismo , Cumarinas/farmacología
12.
Int J Mol Sci ; 23(17)2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36077444

RESUMEN

The closely related species Helicoverpa armigera (H. armigera) and Helicoverpa assulta (H. assulta) have different host plant ranges and share two principal components of sex pheromones but with reversed ratios. The antennae are the main olfactory organ of insects and play a crucial role in host plant selection and mate seeking. However, the genetic basis for gene expression divergence in the antennae of the two species is unclear. We performed an allele-specific expression (ASE) analysis in the antennal transcriptomes of the two species and their F1 hybrids, examining the connection between gene expression divergence and phenotypic differences. The results show that the proportion of genes classified as all cis was higher than that of all trans in males and reversed in females. The contribution of regulatory patterns to gene expression divergence in males was less than that in females, which explained the functional differentiation of male and female antennae. Among the five groups of F1 hybrids, the fertile males from the cross of H. armigera female and H. assulta male had the lowest proportion of misexpressed genes, and the inferred regulatory patterns were more accurate. By using this group of F1 hybrids, we discovered that cis-related regulations play a crucial role in gene expression divergence of sex pheromone perception-related proteins. These results are helpful for understanding how specific changes in the gene expression of olfactory-related genes can contribute to rapid evolutionary changes in important olfactory traits in closely related moths.


Asunto(s)
Mariposas Nocturnas , Atractivos Sexuales , Animales , Antenas de Artrópodos/metabolismo , Femenino , Masculino , Mariposas Nocturnas/genética , Mariposas Nocturnas/metabolismo , Atractivos Sexuales/genética , Atractivos Sexuales/metabolismo , Olfato/genética , Transcriptoma
13.
BMC Biol ; 20(1): 214, 2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-36175945

RESUMEN

BACKGROUND: Odorant receptors (ORs) as odorant-gated ion channels play a crucial role in insect olfaction. They are formed by a heteromultimeric complex of the odorant receptor co-receptor (Orco) and a ligand-selective Or. Other types of olfactory receptor proteins, such as ionotropic receptors (IRs) and some gustatory receptors (GRs), are also involved in the olfactory system of insects. Orco as an obligatory subunit of ORs is highly conserved, providing an opportunity to systematically evaluate OR-dependent olfactory responses. RESULTS: Herein, we successfully established a homozygous mutant (Orco-/-) of Helicoverpa armigera, a notorious crop pest, using the CRISPR/Cas9 gene editing technique. We then compared the olfactory response characteristics of wild type (WT) and Orco-/- adults and larvae. Orco-/- males were infertile, while Orco-/- females were fertile. The lifespan of Orco-/- females was longer than that of WT females. The expressions of most Ors, Irs, and other olfaction-related genes in adult antennae of Orco-/- moths were not obviously affected, but some of them were up- or down-regulated. In addition, there was no change in the neuroanatomical phenotype of Orco-/- moths at the level of the antennal lobe (including the macroglomerular complex region of the male). Using EAG and SSR techniques, we discovered that electrophysiological responses of Orco-/- moths to sex pheromone components and many host plant odorants were absent. The upwind flight behaviors toward sex pheromones of Orco-/- males were severely reduced in a wind tunnel experiment. The oviposition selectivity of Orco-/- females to the host plant (green pepper) has completely disappeared, and the chemotaxis toward green pepper was also lost in Orco-/- larvae. CONCLUSIONS: Our study indicates that OR-mediated olfaction is essential for pheromone communication, oviposition selection, and larval chemotaxis of H. armigera, suggesting a strategy in which mate searching and host-seeking behaviors of moth pests could be disrupted by inhibiting or silencing Orco expression.


Asunto(s)
Mariposas Nocturnas , Receptores Odorantes , Atractivos Sexuales , Animales , Femenino , Masculino , Electrólitos , Proteínas de Insectos/metabolismo , Canales Iónicos , Larva/genética , Larva/metabolismo , Ligandos , Mariposas Nocturnas/genética , Mutagénesis , Feromonas , Receptores Odorantes/metabolismo , Olfato
14.
Pest Manag Sci ; 78(5): 2052-2064, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35124874

RESUMEN

BACKGROUND: The fall armyworm, Spodoptera frugiperda (J. E. Smith), is a polyphagous moth species that is spreading all around the globe. It uses (Z)-9-tetradecenyl acetate (Z9-14:Ac) and (Z)-7-dodecenyl acetate (Z7-12:Ac) (100:3.9) as essential sex pheromone components. However, our understanding of the molecular basis of pheromone detection of S. frugiperda is still incomplete. RESULTS: Herein, we identified six PRs, i.e. SfruOR6, 11, 13, 16, 56, and 62, by transcriptome sequencing. Subsequently, we heterologously expressed them in Drosophila OR67d neurons and determined their response spectra with a large panel of sex pheromones and analogs. Among them, SfruOR13-expressing neurons strongly respond to the major sex pheromone component Z9-14:Ac, but also comparably to (Z,E)-9,12-tetradecadienyl acetate (Z9,E12-14:Ac) and weakly to (Z)-9-dodecenyl acetate (Z9-12:Ac). Both SfruOR56 and SfruOR62 are specifically tuned to the minor sex pheromone component Z7-12:Ac with varying intensities and sensitivities. In addition, SfruOR6 is activated only by Z9,E12-14:Ac, and SfruOR16 by both (Z)-9-tetradecenol (Z9-14:OH) and (Z)-9-tetradecenal (Z9-14:Ald). However, the OR67d neurons expressing SfruOR11 remain silent to all compounds tested, a phenomenon commonly found in the OR11 clade of Noctuidae species. Next, using single sensillum recording, we characterized four sensilla types on the antennae of males, namely A, B, C and D types that are tuned to the ligands of PRs, thereby confirming that S. frugiperda uses both SfruOR56 and SfruOR62 to detect Z7-12:Ac. Finally, using wind tunnel assay, we demonstrate that both Z9,E12-14:Ac and Z9-14:OH act as antagonists to the sex pheromone. CONCLUSION: We have deorphanized five PRs and characterized four types of sensilla responsible for the detection of pheromone compounds, providing insights into the peripheral encoding of sex pheromones in S. frugiperda.


Asunto(s)
Mariposas Nocturnas , Atractivos Sexuales , Animales , Masculino , Feromonas , Receptores de Feromonas/genética , Atractivos Sexuales/farmacología , Spodoptera/genética
15.
Int J Mol Sci ; 24(1)2022 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-36613791

RESUMEN

Skeletal muscle-based nonshivering thermogenesis (NST) plays an important role in the regulation and maintenance of body temperature in birds and large mammals, which do not contain brown adipose tissue (BAT). However, the relative contribution of muscle-based NST to thermoregulation is not clearly elucidated in wild small mammals, which have evolved an obligate thermogenic organ of BAT. In this study, we investigated whether muscle would become an important site of NST when BAT function is conditionally minimized in Brandt's voles (Lasiopodomys brandtii). We surgically removed interscapular BAT (iBAT, which constitutes 52%~56% of total BAT) and exposed the voles to prolonged cold (4 °C) for 28 days. The iBAT-ablated voles were able to maintain the same levels of NST and body temperature (~37.9 °C) during the entire period of cold acclimation as sham voles. The expression of uncoupling protein 1 (UCP1) and its transcriptional regulators at both protein and mRNA levels in the iBAT of cold-acclimated voles was higher than that in the warm group. However, no difference was observed in the protein or mRNA levels of these thermogenesis-related markers except for PGC-1α in other sites of BAT (including infrascapular region, neck, and axilla) between warm and cold groups either in sham or iBAT-ablated voles. The iBAT-ablated voles showed higher UCP1 expression in white adipose tissue (WAT) than sham voles during cold acclimation. The expression of sarcolipin (SLN) and sarcoplasmic endoplasmic reticulum Ca2+-dependent adenosine triphosphatase (SERCA) in skeletal muscles was higher in cold than in warm, but no alteration in phospholamban (PLB) and phosphorylated-PLB (P-PLB) was observed. Additionally, there was increased in iBAT-ablated voles compared to that in the sham group in cold. Moreover, these iBAT-ablated voles underwent extensive remodeling of mitochondria and genes of key components related with mitochondrial metabolism. These data collectively indicate that recruitment of skeletal muscle-based thermogenesis may compensate for BAT impairment and suggest a functional interaction between the two forms of thermogenic processes of iBAT and skeletal muscle in wild small mammals for coping cold stress.


Asunto(s)
Tejido Adiposo Pardo , Frío , Animales , Aclimatación/fisiología , Tejido Adiposo Pardo/metabolismo , Arvicolinae/genética , Músculo Esquelético/metabolismo , ARN Mensajero/metabolismo , Termogénesis/genética , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
16.
Insect Sci ; 29(3): 865-878, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34297483

RESUMEN

The fall armyworm Spodoptera frugiperda is a worldwide serious agricultural pest, and recently invaded South China. Sex pheromone can be employed to monitor its population dynamics accurately in the field. However, the pheromone components previously reported by testing different geographic populations and strains are not consistent. On the basis of confirming that the S. frugiperda population from Yunnan Province belonged to the corn strain, we analyzed the potential sex pheromone components in the pheromone gland extracts of females using gas chromatography coupled with electroantennographic detection (GC-EAD), gas chromatography coupled with mass spectrometry (GC-MS) and electroantennography (EAG). The results show that (Z)-9-tetradecenal acetate (Z9-14:Ac), (Z)-11-hexadecenyl acetate (Z11-16:Ac), (Z)-7-dodecenyl acetate (Z7-12:Ac) or (E)-7-dodecenyl acetate (E7-12:Ac) with a ratio of 100 : 15.8 : 3.9 induced EAD responses to varying degrees: Z9-14:Ac elicited a strong EAD response, Z7-12:Ac or E7-12:Ac elicited a small but clear EAD response, while Z11-16:Ac elicited a weak EAD response. Further single sensillum recording (SSR) showed that Z9-14:Ac and Z7-12:Ac induced dose-dependent activities in two types (A and B) of sensilla in male antennae, respectively, while the sensilla in response to E7-12:Ac and Z11-16:Ac was not recorded. Finally, wind tunnel tests reveal that Z9-14:Ac and Z7-12:Ac are two principal sex pheromone components of the tested population.


Asunto(s)
Mariposas Nocturnas , Atractivos Sexuales , Animales , China , Femenino , Especies Introducidas , Masculino , Mariposas Nocturnas/fisiología , Feromonas/farmacología , Atractivos Sexuales/química , Atractivos Sexuales/farmacología , Spodoptera
17.
Insect Biochem Mol Biol ; 141: 103702, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34942332

RESUMEN

Helicoverpa armigera and H. assulta are sympatric closely related species sharing two sex pheromone components, (Z)-11-hexadecenal (Z11-16:Ald) and (Z)-9-hexadecenal (Z9-16:Ald) but in opposite ratios, 97:3 and 3:97 respectively. This feature makes them a feasible model for studying the evolution of pheromone coding mechanisms of lepidopteran insects. Despite a decade-long study to deorphanize the pheromone receptor (PR) repertoires of the two species, the comparison of the function of all PR orthologs between the two species is incomplete. Moreover, the ligands of OR14 and OR15 have so far not been found, likely due to the missing of the active ligand(s) in the compound panel and/or incompatibility of heterologous expression systems used. In the present study, we expressed the PR repertoires of both Helicoverpa species in Drosophila T1 neurons to comparatively study the function of PRs. Among those PRs, OR13, OR6, and OR14 of both species are functionally conserved and narrowly tuned, and the T1 neurons expressing each of them respond to Z11-16:Ald, (Z)-9-hexadecenol (Z9-16:OH), and (Z)-11-hexadecenyl acetate (Z11-16:Ac), respectively. While HarmOR16-expressing neurons respond strongly to (Z)-9-tetradecenal (Z9-14:Ald) and (Z)-11-hexadecenol (Z11-16:OH), the neurons expressing HassOR16 mainly respond to Z9-14:Ald and also weakly respond to (Z)-9-tetradecenol (Z9-14:OH). Moreover, HarmOR14b-expressing neurons are activated by Z9-14:Ald, whereas HassOR14b-expressing neurons are sensitive to Z9-16:Ald, Z9-14:Ald, and (Z)-9-hexadecenol (Z9-16:OH). In addition, HarmOR15-expressing neurons are selectively responsive to Z9-14:Ald. However, the Drosophila T1 neurons expressing either HarmOR11 or HassOR11 are silent to all of the compounds tested. In summary, except for OR11, we have deorphanized all the PRs of these two Helicoverpa species using a Drosophila expression system and a large panel of pheromone compounds, thereby providing a valuable reference for parsing the code of peripheral coding of pheromones.


Asunto(s)
Proteínas de Insectos/genética , Mariposas Nocturnas/genética , Receptores de Feromonas/genética , Animales , Animales Modificados Genéticamente/genética , Drosophila melanogaster/genética , Proteínas de Insectos/metabolismo , Masculino , Mariposas Nocturnas/metabolismo , Receptores de Feromonas/metabolismo , Especificidad de la Especie
18.
J Insect Physiol ; 133: 104276, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34245800

RESUMEN

The insect taste system regulates insect feeding behavior and patterns of food consumption. In this study, we showed that the medial and lateral sensilla styloconica in the mouthparts of 5th-instar Asian corn borer larvae are sensitive to fructose and sucrose in a concentration-dependent way. The two sensilla produced significant electrophysiological responses (greater than100 spikes/s) by exposure to 10 mM fructose or sucrose. However, electrophysiological responses and feeding preferences to fructose or sucrose were inhibited by neuropeptide F double-stranded RNA (dsNPF). Additionally, the medial sensilla styloconica are sensitive to low concentrations of the deterrents caffeine and nicotine. However, starvation, followed by increases in larval npf expression plus feeding, led to increases in spike frequencies of related sensilla to fructose, sucrose, and deterrents. In contrast, these responses were reduced on the dsNPF treatment. Our results suggest that NPF plays an important role influencing caterpillar feeding behavior through regulating the taste neurons of the sensilla styloconica.


Asunto(s)
Fructosa/metabolismo , Proteínas de Insectos/genética , Mariposas Nocturnas/fisiología , Neuropéptidos/genética , Sacarosa/metabolismo , Animales , Relación Dosis-Respuesta a Droga , Conducta Alimentaria , Proteínas de Insectos/metabolismo , Larva/crecimiento & desarrollo , Larva/fisiología , Mariposas Nocturnas/crecimiento & desarrollo , Neuropéptidos/metabolismo , Sensilos/fisiología , Percepción del Gusto
19.
PLoS Genet ; 17(7): e1009527, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34264948

RESUMEN

Glucosinolates are token stimuli in host selection of many crucifer specialist insects, but the underlying molecular basis for host selection in these insects remains enigmatic. Using a combination of behavioral, electrophysiological, and molecular methods, we investigate glucosinolate receptors in the cabbage butterfly Pieris rapae. Sinigrin, as a potent feeding stimulant, elicited activity in larval maxillary lateral sensilla styloconica, as well as in adult medial tarsal sensilla. Two P. rapae gustatory receptor genes PrapGr28 and PrapGr15 were identified with high expression in female tarsi, and the subsequent functional analyses showed that Xenopus oocytes only expressing PrapGr28 had specific responses to sinigrin; when ectopically expressed in Drosophila sugar sensing neurons, PrapGr28 conferred sinigrin sensitivity to these neurons. RNA interference experiments further showed that knockdown of PrapGr28 reduced the sensitivity of adult medial tarsal sensilla to sinigrin. Taken together, we conclude that PrapGr28 is a gustatory receptor tuned to sinigrin in P. rapae, which paves the way for revealing the molecular basis of the relationships between crucifer plants and their specialist insects.


Asunto(s)
Mariposas Diurnas/fisiología , Glucosinolatos , Proteínas de Insectos/metabolismo , Receptores de Superficie Celular/metabolismo , Animales , Brassica , Mariposas Diurnas/efectos de los fármacos , Drosophila/genética , Femenino , Regulación de la Expresión Génica , Glucosinolatos/farmacología , Proteínas de Insectos/genética , Larva , Oocitos/metabolismo , Receptores de Superficie Celular/genética , Percepción del Gusto , Xenopus
20.
Insect Biochem Mol Biol ; 131: 103554, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33600999

RESUMEN

Helicoverpa armigera utilizes (Z)-11-hexadecenal (Z11-16:Ald) as its major sex pheromone component. Three pheromone binding proteins (PBPs) and two general odorant binding proteins (GOBPs) are abundantly expressed in the male antennae of H. armigera. However, their precise roles in the olfactory detection of Z11-16:Ald remain enigmatic. To answer this question, we first synthesized the antibody against HarmOR13, an olfactory receptor (OR) primarily responding to Z11-16:Ald and mapped the local associations between PBPs/GOBPs and HarmOR13. Immunostaining showed that HarmPBPs and HarmGOBPs were localized in the supporting cells of trichoid sensilla and basiconic sensilla respectively. In particular, HarmPBP1 and HarmPBP2 were colocalized in the cells surrounding the olfactory receptor neurons (ORNs) expressing HarmOR13. Next, using two noninterfering binary expression tools, we heterologously expressed HarmPBP1, HarmPBP2 and HarmOR13 in Drosophila T1 sensilla to validate the functional interplay between PBPs and HarmOR13. We found that the addition of HarmPBP1 or HarmPBP2, not HarmPBP3, significantly increased HarmOR13's response to Z11-16:Ald. However, the presence of either HarmPBP1 or HarmPBP2 was ineffective to change the tuning breadth of HarmOR13 and modulate the response kinetics of this receptor. Taken together, this work demonstrates both HarmPBP1 and HarmPBP2 are involved in Z11-16:Ald detection. Our results support the idea that PBPs can contribute to the peripheral olfactory sensitivity but do little in modulating the selectivity and the response kinetics of corresponding ORs.


Asunto(s)
Aldehídos/farmacología , Mariposas Nocturnas/metabolismo , Receptores Odorantes/metabolismo , Olfato/fisiología , Animales , Anticuerpos , Antenas de Artrópodos/metabolismo , Inmunohistoquímica/métodos , Proteínas de Insectos/metabolismo , Mariposas Nocturnas/fisiología , Neuronas Receptoras Olfatorias/fisiología , Receptores Odorantes/efectos de los fármacos , Receptores Odorantes/inmunología , Sensilos/metabolismo , Atractivos Sexuales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...