Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Chem Commun (Camb) ; 60(9): 1148-1151, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38189208

RESUMEN

Reactions of o-carborane-fused bis-silylene 1 with isocyanate/isothiocyanate molecules furnished a series of SiN/SiS-heterocycles, which show distinct styles of cyclization and were theoretically studied.

2.
Int J Med Sci ; 21(3): 464-473, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38250601

RESUMEN

Purpose: Osteoporosis (OP) and diabetes are prevalent diseases in orthopedic and endocrinology departments, with OP potentially arising as a complication of diabetes. However, the mechanism underlying diabetes-induced osteoporosis (DOP) remains enigmatic, and drug discovery in this domain is restricted, hindering research into the DOP's etiology and treatment. With the ultimate goal of preventing OP in diabetic patients, the objective of this study is to mine the genes and pathways linked to DOP using bioinformatics and databases. Method: The present study employed text mining as the initial approach to retrieve genes commonly associated with diabetes and OP. Subsequently, functional annotation was conducted to investigate the roles and functionalities. In order to explore the interactions between proteins relevant to DOP, we constructed protein-protein interaction (PPI) networks. Furthermore, to obtain key genes and candidate drugs for DOP treatment, we conducted drug-gene interaction (DGI) analysis, complemented by a thorough examination of transcriptional factors (TFs)-miRNA co-regulation. Results: The results through text mining revealed 110 genes that are commonly associated with both diabetes and OP. Subsequent enrichment analysis narrowed down the list to 95 symbols that were involved in PPI analysis. After DGI analysis, we identified 7 genes targeted by 11 drugs, which represent candidates for treating DOP. Conclusion: This study unveils ANDECALIXIMAB, SILTUXIMAB, OLOKIZUMAB, SECUKINUMAB, and IXEKIZUMAB as promising potential drugs for DOP treatment, demonstrating the significance of utilizing text mining and pathway analysis to investigate disease mechanisms and explore existing therapeutic options.


Asunto(s)
Diabetes Mellitus , MicroARNs , Humanos , Diabetes Mellitus/tratamiento farmacológico , Diabetes Mellitus/genética , Biología Computacional , Minería de Datos , Descubrimiento de Drogas
3.
Int J Biol Sci ; 19(15): 4865-4882, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37781508

RESUMEN

Background: The JAK/STAT signaling pathway is the main inflammatory signal transduction pathway, whether JAK/STAT contributes the pathology of SCI and targeting the pathway will alleviate SCI needs to be addressed. Here, we explored the therapeutic effect of pan-JAK inhibitor tofacitinib (TOF) on secondary injury after SCI and explained the underlying mechanisms. Methods: SCI model in rat was established to evaluate the therapeutic effects of TOF treatment in vivo. Histological and behavioral analyses were performed at different time points after SCI. In vitro, the effects of TOF on pro-inflammatory activation of primary microglia and BV2 cells were analyzed by western blot analysis, fluorescent staining, qPCR and flow cytometry. The neuroprotection of TOF was detected using a co-culture system with primary neurons and microglia. Results: TOF can effectively improve motor dysfunction caused by spinal cord injury in rats. TOF administration in the early stage of inflammation can effectively inhibit neuronal apoptosis and scar tissue formation, and promote the repair of axons and nerve fibers. Further studies have demonstrated that TOF suppresses inflammation caused by spinal cord injury by inhibiting the activation of microglia to pro-inflammatory phenotype in vivo and in vitro. Additionally, an interesting phenomenon is revealed in our results that TOF exhibits superior neuronal protection during inflammation in vitro. Conclusions: Our study showed that TOF could regulate microglial activation via JAK / STAT pathway and promote the recovery of motor function after SCI, which is of great significance for the immunotherapy of SCI.


Asunto(s)
Microglía , Traumatismos de la Médula Espinal , Ratas , Animales , Ratas Sprague-Dawley , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/patología , Inflamación/metabolismo , Transducción de Señal , Médula Espinal/metabolismo
4.
Chem Commun (Camb) ; 59(68): 10275-10278, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37539464

RESUMEN

Bis(1-adamantyl)phosphanylsilylene 1 was reacted with ArCCR (Ar = Ph, 4-iPr-C6H4, 3-F-C6H4; R = H, Ph) at 80 °C under microwave irradiation to afford fluorescence-active SiP-heterocycles 3a-d, which may undergo unique isomerizations starting from silirene intermediates. Moreover, the treatment of 1 with AdCP furnished a heavy congener of cyclopentadiene (4), whose formation involves cleavage of the Si(II)-P bond that is rarely observed in silylene chemistry.

5.
Sci Total Environ ; 901: 166032, 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-37541524

RESUMEN

A dynamic model of soil erosion along hillslopes considering soil detachment and sediment transport is still a major challenge in terms of its applicability to field conditions. Data availability for model calibration and validation is very limited for physically process models. An improved hillslope erosion dynamic model (HED) with a simple structure and strong application on field plots was established based on the sediment feedback mechanism in this study. Observed runoff and sediment data from field plots with slope gradients of 14.1 %-62.5 % and slope lengths of 7.9-64.7 m within runoff events for the Chagagou catchment on the Loess Plateau of China were used to evaluate the HED. We confirmed that the power function can reproduce the soil detachment capacity (Φ) and sediment transport capacity (Tc) under varying field slope conditions (gradients and lengths). The two parameters associated with the power function of Φ or Tc are consistent across the variable conditions. When the HED model simulates the process and event sediment discharge, the unified model parameters could be obtained. The simulation precision of above results ranged from 0.44 to 0.95 for Nash-Sutcliffe simulation efficiency (NSE), from 0.65 to 0.96 for R2 and from -32.37 % to 31.61 % for relative error (RE). The feedback term of HED was close to one as the slope length approached zero. Decreasing of sediment yield as slope length increased was quite consistent with the measured data due to the reasonable sediment feedback term. The critical slope lengths were more easily reached, and the feedback term value along the slope decreased more rapidly at steeper slopes and higher runoff events. HED can be further integrated into distributed watershed models for predicting sediment discharge within runoff events.

6.
Sci Total Environ ; 879: 163090, 2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-37003178

RESUMEN

The sediment transport capacity by overland flow (Tc) is a key parameter in process-based soil erosion models and Tc variation is sensitive to changes in soil properties. This study was undertaken to investigate Tc variations with respect to soil properties and establish a universal relationship to predict Tc. The test soils were collected from typical agricultural regions (Guanzhong basin-Yangling (YL), Weibei Dry plateau-Chunhua (CH), Hilly and gully region-Ansai (AS), Ago-pastoral transition zone along the Great Wall-Yuyang (YY), and Weiriver floodplain-Weicheng (WC)) of the Loess Plateau, and subjected to 36 different combinations of slope gradients (S, 5.24-44.52 %) and flow discharge (q, 0.00033-0.00125 m2 s-1) in a hydraulic flume. The results showed that the mean Tc values for WC were 2.15, 1.38, 1.32, and 1.16 times greater than those for YL, CH, AS, and YY, respectively. Tc significantly decreased with clay content (C), mean weight diameter (MWD), and soil organic matter content (SOM). Tc for different soil types increased with S and q as a binary power function, and Tc variation was more sensitive to S than to q. Stream power (w) was the most appropriate hydraulic variable to express Tc for different soils. Tc for different soil types could be satisfactorily simulated using a quaternary power function of S, q, C, and MWD (R2 = 0.94; NSE = 0.94) or a ternary power function of w, C, and MWD (R2 = 0.94; NSE = 0.94). The new Tc equation can reflect the effect of soil properties on it and facilitate the development of a process-based soil erosion model.

7.
Inorg Chem ; 62(3): 1095-1101, 2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36617725

RESUMEN

The reactivities of o-carborane-fused silylenes toward molecules with C≡E (E = C, P) bonds are reported. The reactions of bis(silylene) [(LSi:)C]2B10H10 (1a, L = PhC(NtBu)2) with arylalkynes afforded bis(silylium) carborane adducts 2 and 3, showing a Si(µ-C2)Si structure with an open-cage nido-carborane backbone. In contrast, the reaction of 1a with a phosphaalkyne AdC≡P (Ad = 1-adamantyl) smoothly furnished compound 4, comprising fused CPSi rings with a C=Si double bond and Si-Si single bond, and the related formation mechanism was investigated by DFT calculations. Furthermore, when monosilylene [(LSi:)C]CHB10H10 (1b) was employed to react with AdC≡P, compound 5 was isolated. The structure of 5 features a 1,2,3-triphosphetene core. All products were characterized by NMR spectroscopy and/or X-ray crystallography.


Asunto(s)
Cristalografía por Rayos X , Teoría Funcional de la Densidad
8.
World Neurosurg ; 174: e8-e16, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36716856

RESUMEN

BACKGROUND: Ankylosing spondylitis (AS) and osteoporosis (OP) are both prevalent illnesses in spine surgery, with OP being a possible consequence of AS. However, the mechanism of AS-induced OP (AS-OP) remains unknown, limiting etiologic research and therapy of the illness. To mine targetable medicine for the prevention and treatment of AS-OP, this study analyzes public data sets using bioinformatics to identify genes and biological pathways relevant to AS-OP. METHODS: First, text mining was used to identify common genes associated with AS and OP, after which functional analysis was carried out. The STRING database and Cytoscape software were used to create protein-protein interaction networks. Hub genes and potential drugs were discovered using drug-gene interaction analysis and transcription factors-gene interaction analysis. RESULTS: The results of text mining showed 241 genes common to AS and OP, from which 115 key symbols were sorted out by functional analysis. As options for treating AS-OP, protein-protein interaction analysis yielded 20 genes, which may be targeted by 13 medications. CONCLUSIONS: Carlumab, bermekimab, rilonacept, rilotumumab, and ficlatuzumab were first identified as the potential drugs for the treatment of AS-OP, proving the value of text mining and pathway analysis in drug discovery.


Asunto(s)
Osteoporosis , Espondilitis Anquilosante , Humanos , Espondilitis Anquilosante/tratamiento farmacológico , Espondilitis Anquilosante/genética , Espondilitis Anquilosante/complicaciones , Osteoporosis/tratamiento farmacológico , Osteoporosis/genética , Osteoporosis/complicaciones , Biología Computacional , Descubrimiento de Drogas/métodos , Minería de Datos
9.
Orthop Surg ; 14(10): 2711-2720, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36102202

RESUMEN

OBJECTIVE: Previous studies have neither explored the usage of cross-links nor investigated the optimal position of the cross-links in posterior lumbar interbody fusion (PLIF). This study evaluates biomechanical properties of cross-links in terms of different fixation segments and optimal position in single- and multi-segment posterior lumbar interbody fusion. METHODS: Two finite element (FE) models of instrumented lumbosacral spine with single-(L4/5) and multi-segment (L3-S1) PLIF surgery were simulated. On the basis of the two models, the benefits of the usage of cross-links were assessed and compared with the status of no application of cross-links. Moreover, the effects of position of cross-links on multi-segment PLIF surgery were studied in Upper, Middle, and Lower positions. RESULTS: No significant difference was found in the range of motion (ROM), intersegmental rotational angle (IRA) of adjacent segments, and intradiscal pressure (IDP) regardless of the usage of cross-links in the single-segment PLIF surgery, while the cross-link increased the maximum von Mises stress in the fixation (MSF) under the axial rotation (53.65 MPa vs 41.42 MPa). In the multi-segment PLIF surgery, the usage of cross-links showed anti-rotational advantages indicated by ROM (Without Cross-link 2.35o , Upper, 2.24o ; Middle, 2.26o ; Lower, 2.30o ) and IRA (Without Cross-link 1.19o , Upper, 1.08o ; Middle, 1.09o ; Lower, 1.13o ). The greatest values of MSF were found in without cross-link case under the flexion, lateral bending, and axial rotation (37.48, 62.61, and 86.73 MPa). The application of cross-links at the Middle and Lower positions had lower values of MSF (48.79 and 69.62 MPa) under the lateral bending and axial rotation, respectively. CONCLUSION: The application of cross-links was not beneficial for the single-segment PLIF, while it was found highly advantageous for the multi-segment PLIF. Moreover, the usage of cross-links at the Middle or Lower positions resulted in a better biomechanical stability.


Asunto(s)
Fusión Vertebral , Humanos , Fenómenos Biomecánicos , Análisis de Elementos Finitos , Vértebras Lumbares/cirugía , Región Lumbosacra , Rango del Movimiento Articular , Fusión Vertebral/métodos
10.
Inorg Chem ; 61(40): 15864-15870, 2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36178201

RESUMEN

The reactions of amidinate silylene chloride LSi(:)Cl (L = PhC(NtBu)2) with TMS- and Ph-ethynyl lithium salts gave rise to silacycles 1 and 4, respectively. The formation of 1 and 4 may undergo cyclo-condensations of transient ethynylsilylene intermidiates and the activation of an amidinate backbone. The distinct structures of 1 and 4 may be derived from the different electronic or steric properties of ethynyl substituents, and their formation mechanisms were investigated by density functional theory (DFT) calculations. Moreover, a sequential reaction of LSi(:)Cl with BH3·SMe2 and TMSC≡CLi as well as a reaction of LSi(:)Cl with TMSC≡CLi under O2 exclusively obtained ethynylsilanes 2 and 3, respectively, which indicated that either blocking a lone pair of a Si(II) atom or oxidizing Si(II) to Si(IV) prevents the further conversion of ethynylsilylenes to silacycle 1. All products were characterized by NMR spectroscopy and X-ray crystallography.

11.
Medicine (Baltimore) ; 101(31): e29380, 2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35945750

RESUMEN

Dissecting the complex relationships between skin aging and air pollution has been an ongoing effort. The increased exposure to air pollution over time imposed a negative effect on skin. This study explores the correlation between skin aging in the Asian population and levels of air pollutants to show different relationship between the two. This study was retrospective and included 389 patients, age between 30 and 74, who planned to receive a session of laser treatment for skin disorders in Kaohsiung Medical University Hospital (KMUH) from 2006 to 2019. Preoperative skin condition quantified by VISIA Complexion Analysis System (Canfield Imaging Systems, Fierfield, NJ, US). Eight air pollutants such as carbon monoxide (CO), non-methane hydrocarbon (NMHC), nitrogen oxides (NO, NO2, and NOx), particulate matters (PM2.5 and PM10), ozone (O3), sulfur dioxide (SO2) and 8 skin condition such as spots, wrinkles, textures, pores, ultraviolet spots (UV spots), brown spots, red area, and porphyrin were analyzed to explore correlation between air pollution and skin aging. Strong correlation was found between NMHC exposure and texture, pores and brown spots formation. A positive correlation between O3 and better VISIA texture and pores scores was found. Brown spots was found to negatively associate with CO, NMHC, NO2, NOx, PM10, PM2.5, and SO2. The skin condition of population over age 45 affected by CO, NMHC, NO2, NOx, PM2.5, PM10, and SO2. Skin condition of the bottom 10% strongly correlates with exposure to PM10 and SO2, whereas skin condition of the top 10% was affected by PM10. Air pollutants such as CO, NO2, NOx, PM2.5, PM10, SO2, and NMHC were found to correlate with negative skin quality strongly. In contrast, O3 exposure is associated with less texture and pores. Future studies are warranted to further appreciate the relationships between air pollutants and skin condition.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ozono , Envejecimiento de la Piel , Adulto , Anciano , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Humanos , Persona de Mediana Edad , Dióxido de Nitrógeno/análisis , Ozono/efectos adversos , Material Particulado/efectos adversos , Material Particulado/análisis , Estudios Retrospectivos , Dióxido de Azufre/análisis , Taiwán/epidemiología
12.
Front Immunol ; 13: 963582, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35990672

RESUMEN

Spinal cord injury (SCI) is a devastating trauma characterized by serious neuroinflammation and permanent neurological dysfunction. However, the molecular mechanism of SCI remains unclear, and few effective medical therapies are available at present. In this study, multiple bioinformatics methods were used to screen out novel targets for SCI, and the mechanism of these candidates during the progression of neuroinflammation as well as the therapeutic effects were both verified in a rat model of traumatic SCI. As a result, CASP4, IGSF6 and IL1R1 were identified as the potential diagnostic and therapeutic targets for SCI by computational analysis, which were enriched in NF-κB and IL6-JAK-STATA3 signaling pathways. In the injured spinal cord, these three signatures were up-regulated and closely correlated with NLRP3 inflammasome formation and gasdermin D (GSDMD) -induced pyroptosis. Intrathecal injection of inhibitors of IL1R1 or CASP4 improved the functional recovery of SCI rats and decreased the expression of these targets and inflammasome component proteins, such as NLRP3 and GSDMD. This treatment also inhibited the pp65 activation into the nucleus and apoptosis progression. In conclusion, our findings of the three targets shed new light on the pathogenesis of SCI, and the use of immunosuppressive agents targeting these proteins exerted anti-inflammatory effects against spinal cord inflammation by inhibiting NF-kB and NLRP3 inflammasome activation, thus blocking GSDMD -induced pyroptosis and immune activation.


Asunto(s)
Inflamasomas , Traumatismos de la Médula Espinal , Animales , Inflamasomas/metabolismo , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Piroptosis , Ratas , Ratas Sprague-Dawley , Traumatismos de la Médula Espinal/metabolismo
13.
Ann Transl Med ; 10(13): 733, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35957736

RESUMEN

Background: Spinal cord injury (SCI) and osteoporosis (OP) are common diseases in spine surgery, and OP could be the complication of SCI. However, SCI-induced OP is a complex pathologic process and drug discovery is limited, which restricts the study in the mechanism and treatment of the disease. This study aims to identify the genes and molecular pathways related to SCI-induced OP through computational tools and public datasets, and to explore drug targeting therapy, ultimately preventing the occurrence of OP after SCI. Methods: In this study, common genes related to SCI and OP were obtained by text mining, then which conducted the functional analysis. Protein-protein interaction (PPI) networks were constructed by STRING online and Cytoscape software. Finally, core genes and potential drugs were performed after undergoing drug-gene interaction analysis which also completed functional analysis. Results: A total of 371 genes common to 'SCI' and 'OP' were identified by text mining. After functional analysis, 207 significant genes were screened out. Subsequently, PPI analysis yielded 23 genes targetable by 13 drugs which were the candidate to treat SCI-induced OP. Conclusions: Taken together, siltuximab, olokizumab, clazakizumab and BAN2401 were first discovered to become the potential drugs for the treatment of SCI-induced OP. Drug discovery using text mining and pathway analysis is a significant way to investigate the pathomechanism of the disease while exploring existing drugs to treat the disease.

14.
Int J Oncol ; 61(1)2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35642672

RESUMEN

Cell division cycle­associated 5 (CDCA5) protein, which is involved in cohesion, contributes to cell cycle regulation and chromosome segregation by maintaining genomic stability. Accumulating evidence indicates that CDCA5 expression is upregulated in a number of types of cancer associated with a poor prognosis. However, the biological function of CDCA5 in clear cell renal cell carcinoma (ccRCC) remains largely unknown. In the present study, The Cancer Genome Atlas data mining revealed that CDCA5 was more highly expressed in ccRCC than in adjacent normal tissues. Importantly, such a high expression was associated with a higher risk of distant metastasis and poorer clinical outcomes. Moreover, the clinical and prognostic value of CDCA5 expression was further investigated using immunohistochemistry on tissue microarrays containing paired tumor tissues and adjacent normal tissues from 137 patients with ccRCC. Functional analyses revealed that CDCA5 knockdown significantly inhibited the proliferation and migration of ccRCC cells, and suppressed the growth of xenografts in nude mice. Mechanistically, CDCA5 knockdown induced severe DNA damage with the persistent accumulation of γ­H2A histone family member X foci, resulting in G2/M cell cycle arrest and finally, in chromosomal instability and apoptosis. CDCA5 knockdown significantly decreased the phosphorylation levels of Stat3 and NF­κB, suggesting that CDCA5 plays a role in regulating the inflammatory response. Collectively, the findings of the present study indicate that ccRCC cells require CDCA5 for malignant progression, and that CDCA5 inhibition may enhance the outcomes of patients with high­risk ccRCC.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Carcinoma de Células Renales , Proteínas de Ciclo Celular , Daño del ADN , Neoplasias Renales , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Apoptosis/genética , Carcinoma de Células Renales/patología , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Proliferación Celular/genética , Puntos de Control de la Fase G2 del Ciclo Celular , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Renales/patología , Ratones , Ratones Desnudos
15.
Lab Invest ; 102(9): 1011-1022, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35585131

RESUMEN

Clear cell renal cell carcinoma (ccRCC) is one of the most common malignant tumors and is characterized by a poor prognosis. Although G2- and S -phase expressed-1 (GTSE1) is known to be involved in the progression and metastasis of various cancers, its significance and mechanism in ccRCC remain unknown. In the present study, we found that GTSE1 was overexpressed in ccRCC tissues, especially in metastatic samples. Moreover, high GTSE1 expression was positively correlated with higher pT stage, tumor size, clinical stage, and WHO/ISUP grade and worse prognosis. And GTSE1 expression served as an independent prognostic factor for overall survival (OS). In addition, GTSE1 knockdown inhibited ccRCC cell proliferation, migration, and invasion, and enhanced cell apoptosis in vitro and in vivo. GTSE1 was crucial for epithelial-mesenchymal transition (EMT) in ccRCC. Mechanistically, GTSE1 depletion could upregulate the expression of Krüppel-like factor 4 (KLF4), which acts as a tumor suppressor in ccRCC. Downregulation of KLF4 effectively rescued the inhibitory effect induced by GTSE1 knockdown and reversed the EMT process. Overall, our results revealed that GTSE1 served as an oncogene regulating EMT through KLF4 in ccRCC, and that GTSE1 could also serve as a novel prognostic biomarker and may represent a promising therapeutic target for ccRCC.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Humanos , Factor 4 Similar a Kruppel , Proteínas Asociadas a Microtúbulos , Procesos Neoplásicos , Pronóstico
16.
Dalton Trans ; 51(17): 6654-6662, 2022 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-35403644

RESUMEN

The efficiency and cost of electrocatalysts are critical factors restricting their application in water electrochemical decomposition. In recent years, transition metal carbides (TMCs) have been highlighted due to their unique characteristics for water splitting: good conductivity and stability. However, their electrochemical performance required further optimization. In this work, a distinct non-solvent method was utilized to achieve a Ni3ZnC0.7-Mo2C/Ni foam (NF) catalyst, which exhibited a nanoflower structure with efficient exposed active sites. Moreover, the synergistic effect between the Mo and Ni species greatly affected its HER and OER performance. Ni3ZnC0.7-Mo2C/NF showed excellent electrocatalytic performance with small overpotentials of 58 mV and 257 mV at 10 mA cm-2 for the HER and OER, respectively. To our delight, the overall water splitting could be driven by only 1.56 V. This work not only demonstrates an excellent bifunctional electrocatalyst for overall water splitting but also provides another method for polymetallic carbide preparation and activity optimization.

17.
Front Bioeng Biotechnol ; 10: 824688, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35309996

RESUMEN

Objective: Pedicle screw fixation is a common technique used in posterior lumbar interbody fusion (PLIF) surgery for lumbar disorders. During operation, rod contouring is often subjective and not satisfactory, but only few studies focused on the rod-contouring issue previously. The aim of the study was to explore the effect of the rod contouring on the single-segment PLIF by the finite element (FE) method and retrospective study. Methods: A FE model of the lumbosacral vertebrae was first reconstructed, and subsequently single-segmental (L4/5) PLIF surgeries with four rod curvatures (RCs) were simulated. Herein, three RCs were designed by referring to centroid, Cobb, and posterior tangent methods applied in the lumbar lordosis measurement, and zero RC indicating straight rods was included as well. Clinical data of patients subjected to L4/5 segmental PLIF were also analyzed to verify the correlation between RCs and clinical outcome. Results: No difference was observed among the four RC models in the range of motion (ROM), intersegmental rotation angle (IRA), and intradiscal pressure (IDP) under four actions. The posterior tangent model had less maximum stress in fixation (MSF) in flexion, extension, and axial rotation than the other RC models. Patients with favorable prognosis had larger RC and positive RC minus posterior tangent angle (RC-PTA) of fused segments with respect to those who had poor prognosis and received revision surgery. Conclusion: All RC models had similar biomechanical behaviors under four actions. The posterior tangent-based RC model was superior in fixation stress distribution compared to centroid, Cobb, and straight models. The retrospective study demonstrated that moderate RC and positive RC-PTA were associated with better postoperative results.

18.
Front Genet ; 13: 799970, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35281834

RESUMEN

Spinal cord injury (SCI) and ankylosing spondylitis (AS) are common inflammatory diseases in spine surgery. However, it is a project where the relationship between the two diseases is ambiguous and the efficiency of drug discovery is limited. Therefore, the study aimed to investigate new drug therapies for SCI and AS. First, text mining was used to obtain the interacting genes related to SCI and AS, and then, the functional analysis was conducted. Protein-protein interaction (PPI) networks were constructed by STRING online and Cytoscape software to identify hub genes. Last, hub genes and potential drugs were performed after undergoing drug-gene interaction analysis, and MicroRNA and transcription factors regulatory networks were also analyzed. Two hundred five genes common to "SCI" and "AS" identified by text mining were enriched in inflammatory responses. PPI network analysis showed that 30 genes constructed two significant modules. Ultimately, nine (SST, VWF, IL1B, IL6, CXCR4, VEGFA, SERPINE1, FN1, and PROS1) out of 30 genes could be targetable by a total of 13 drugs. In conclusion, the novel core genes contribute to a novel insight for latent functional mechanisms and present potential prognostic indicators and therapeutic targets in SCI and AS.

19.
Dalton Trans ; 51(11): 4532-4540, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35234780

RESUMEN

The development of active and cost-effective bifunctional catalysts is crucial for water dissociation through electrolysis. In this study, bifunctional catalysts with Ni nanoparticles (NPs) anchored on MoO2 nanorods have been synthesized via in situ dissolution of NiMoO4-ZIF under an inert atmosphere without using hydrogen gas. The Ni-MoO2 catalyst exhibits high electrocatalytic activity by modulating the calcination temperature. Benefitingfrom the MOF transformation and accompanying Ni particles' outward diffusion, a precisely designed interface heterostructure between Ni and MoO2 was constructed. As a result, the optimized Ni-MoO2 catalyst achieves extremely low overpotentials of only 24 mV and 275 mV at 10 mA cm-2 for the hydrogen evolution reaction and oxygen evolution reaction, respectively. Furthermore, the catalyst required a small cell voltage of 1.55 V to deliver a current density of 10 mA cm-2 and remained stable over 20 h for overall water splitting. The proposed MOF-derived heterojunction protocol provides a general approach for designing and fabricating transition metal oxide catalysts for water electrolysis.

20.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35022235

RESUMEN

p53 plays a central role in tumor suppression. Emerging evidence suggests long noncoding RNA (lncRNA) as an important class of regulatory molecules that control the p53 signaling. Here, we report that the oncogenic lncRNA E2F1 messenger RNA (mRNA) stabilizing factor (EMS) and p53 mutually repress each other's expression. EMS is negatively regulated by p53. As a direct transcriptional repression target of p53, EMS is surprisingly shown to inhibit p53 expression. EMS associates with cytoplasmic polyadenylation element-binding protein 2 (CPEB2) and thus, disrupts the CPEB2-p53 mRNA interaction. This disassociation attenuates CPEB2-mediated p53 mRNA polyadenylation and suppresses p53 translation. Functionally, EMS is able to exert its oncogenic activities, at least partially, via the CPEB2-p53 axis. Together, these findings reveal a double-negative feedback loop between p53 and EMS, through which p53 is finely controlled. Our study also demonstrates a critical role for EMS in promoting tumorigenesis via the negative regulation of p53.


Asunto(s)
Carcinogénesis/genética , ARN Largo no Codificante/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Secuencia de Bases , Línea Celular Tumoral , Proliferación Celular/genética , Senescencia Celular/genética , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Humanos , Masculino , Ratones Desnudos , Biosíntesis de Proteínas , ARN Largo no Codificante/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...