Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Lab Invest ; 103(11): 100247, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37741509

RESUMEN

Epithelial ovarian cancer (EOC) remains a significant cause of mortality among gynecologic cancers, with the majority of cases being diagnosed at an advanced stage. Before targeted therapies were available, EOC treatment relied largely on debulking surgery and platinum-based chemotherapy. Vascular endothelial growth factors have been identified as inducing tumor angiogenesis. According to several clinical trials, anti-vascular endothelial growth factor-targeted therapy with bevacizumab was effective in all phases of EOC treatment. However, there are currently no biomarkers accessible for regular therapeutic use despite the importance of patient selection. Microsatellite instability (MSI), caused by a deficiency of the DNA mismatch repair system, is a molecular abnormality observed in EOC associated with Lynch syndrome. Recent evidence suggests that angiogenesis and MSI are interconnected. Developing predictive biomarkers, which enable the selection of patients who might benefit from bevacizumab-targeted therapy or immunotherapy, is critical for realizing personalized precision medicine. In this study, we developed 2 improved deep learning methods that eliminate the need for laborious detailed image-wise annotations by pathologists and compared them with 3 state-of-the-art methods to not only predict the efficacy of bevacizumab in patients with EOC using mismatch repair protein immunostained tissue microarrays but also predict MSI status directly from histopathologic images. In prediction of therapeutic outcomes, the 2 proposed methods achieved excellent performance by obtaining the highest mean sensitivity and specificity score using MSH2 or MSH6 markers and outperformed 3 state-of-the-art deep learning methods. Moreover, both statistical analysis results, using Cox proportional hazards model analysis and Kaplan-Meier progression-free survival analysis, confirm that the 2 proposed methods successfully differentiate patients with positive therapeutic effects and lower cancer recurrence rates from patients experiencing disease progression after treatment (P < .01). In prediction of MSI status directly from histopathology images, our proposed method also achieved a decent performance in terms of mean sensitivity and specificity score even for imbalanced data sets for both internal validation using tissue microarrays from the local hospital and external validation using whole section slides from The Cancer Genome Atlas archive.


Asunto(s)
Aprendizaje Profundo , Neoplasias Ováricas , Humanos , Femenino , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Carcinoma Epitelial de Ovario/genética , Bevacizumab/farmacología , Bevacizumab/uso terapéutico , Bevacizumab/genética , Inestabilidad de Microsatélites , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología
2.
Int J Mol Sci ; 24(16)2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37628786

RESUMEN

In recent years, several types of platelet concentrates have been investigated and applied in many fields, particularly in the musculoskeletal system. Platelet-rich fibrin (PRF) is an autologous biomaterial, a second-generation platelet concentrate containing platelets and growth factors in the form of fibrin membranes prepared from the blood of patients without additives. During tissue regeneration, platelet concentrates contain a higher percentage of leukocytes and a flexible fibrin net as a scaffold to improve cell migration in angiogenic, osteogenic, and antibacterial capacities during tissue regeneration. PRF enables the release of molecules over a longer period, which promotes tissue healing and regeneration. The potential of PRF to simulate the physiology and immunology of wound healing is also due to the high concentrations of released growth factors and anti-inflammatory cytokines that stimulate vessel formation, cell proliferation, and differentiation. These products have been used safely in clinical applications because of their autologous origin and minimally invasive nature. We focused on a narrative review of PRF therapy and its effects on musculoskeletal, oral, and maxillofacial surgeries and dermatology. We explored the components leading to the biological activity and the published preclinical and clinical research that supports its application in musculoskeletal therapy. The research generally supports the use of PRF as an adjuvant for various chronic muscle, cartilage, and tendon injuries. Further clinical trials are needed to prove the benefits of utilizing the potential of PRF.


Asunto(s)
Plaquetas , Cartílago , Humanos , Adyuvantes Inmunológicos , Adyuvantes Farmacéuticos , Fibrina
3.
Comput Med Imaging Graph ; 108: 102270, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37536053

RESUMEN

Overexpression of human epidermal growth factor receptor 2 (HER2/ERBB2) is identified as a prognostic marker in metastatic breast cancer and a predictor to determine the effects of ERBB2-targeted drugs. Accurate ERBB2 testing is essential in determining the optimal treatment for metastatic breast cancer patients. Brightfield dual in situ hybridization (DISH) was recently authorized by the United States Food and Drug Administration for the assessment of ERRB2 overexpression, which however is a challenging task due to a variety of reasons. Firstly, the presence of touching clustered and overlapping cells render it difficult for segmentation of individual HER2 related cells, which must contain both ERBB2 and CEN17 signals. Secondly, the fuzzy cell boundaries make the localization of each HER2 related cell challenging. Thirdly, variation in the appearance of HER2 related cells is large. Fourthly, as manual annotations are usually made on targets with high confidence, causing sparsely labeled data with some unlabeled HER2 related cells defined as background, this will seriously confuse fully supervised AI learning and cause poor model outcomes. To deal with all issues mentioned above, we propose a two-stage weakly supervised deep learning framework for accurate and robust assessment of ERBB2 overexpression. The effectiveness and robustness of the proposed deep learning framework is evaluated on two DISH datasets acquired at two different magnifications. The experimental results demonstrate that the proposed deep learning framework achieves an accuracy of 96.78 ± 1.25, precision of 97.77 ± 3.09, recall of 84.86 ± 5.83 and Dice Index of 90.77 ± 4.1 and an accuracy of 96.43 ± 2.67, precision of 97.82 ± 3.99, recall of 87.14 ± 10.17 and Dice Index of 91.87 ± 6.51 for segmentation of ERBB2 overexpression on the two experimental datasets, respectively. Furthermore, the proposed deep learning framework outperforms 15 state-of-the-art benchmarked methods by a significant margin (P<0.05) with respect to IoU on both datasets.


Asunto(s)
Neoplasias de la Mama , Receptor ErbB-2 , Humanos , Femenino , Receptor ErbB-2/metabolismo , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/tratamiento farmacológico , Procesamiento de Imagen Asistido por Computador/métodos , Aprendizaje Automático Supervisado
4.
Cancers (Basel) ; 15(15)2023 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-37568809

RESUMEN

Breast cancer is the leading cause of cancer-related deaths among women worldwide, and early detection and treatment has been shown to significantly reduce fatality rates from severe illness. Moreover, determination of the human epidermal growth factor receptor-2 (HER2) gene amplification by Fluorescence in situ hybridization (FISH) and Dual in situ hybridization (DISH) is critical for the selection of appropriate breast cancer patients for HER2-targeted therapy. However, visual examination of microscopy is time-consuming, subjective and poorly reproducible due to high inter-observer variability among pathologists and cytopathologists. The lack of consistency in identifying carcinoma-like nuclei has led to divergences in the calculation of sensitivity and specificity. This manuscript introduces a highly efficient deep learning method with low computing cost. The experimental results demonstrate that the proposed framework achieves high precision and recall on three essential clinical applications, including breast cancer diagnosis and human epidermal receptor factor 2 (HER2) amplification detection on FISH and DISH slides for HER2 target therapy. Furthermore, the proposed method outperforms the majority of the benchmark methods in terms of IoU by a significant margin (p<0.001) on three essential clinical applications. Importantly, run time analysis shows that the proposed method obtains excellent segmentation results with notably reduced time for Artificial intelligence (AI) training (16.93%), AI inference (17.25%) and memory usage (18.52%), making the proposed framework feasible for practical clinical usage.

5.
Artif Intell Med ; 141: 102568, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37295903

RESUMEN

The overexpression of the human epidermal growth factor receptor 2 (HER2) is a predictive biomarker in therapeutic effects for metastatic breast cancer. Accurate HER2 testing is critical for determining the most suitable treatment for patients. Fluorescent in situ hybridization (FISH) and dual in situ hybridization (DISH) have been recognized as FDA-approved methods to determine HER2 overexpression. However, analysis of HER2 overexpression is challenging. Firstly, the boundaries of cells are often unclear and blurry, with large variations in cell shapes and signals, making it challenging to identify the precise areas of HER2-related cells. Secondly, the use of sparsely labeled data, where some unlabeled HER2-related cells are classified as background, can significantly confuse fully supervised AI learning and result in unsatisfactory model outcomes. In this study, we present a weakly supervised Cascade R-CNN (W-CRCNN) model to automatically detect HER2 overexpression in HER2 DISH and FISH images acquired from clinical breast cancer samples. The experimental results demonstrate that the proposed W-CRCNN achieves excellent results in identification of HER2 amplification in three datasets, including two DISH datasets and a FISH dataset. For the FISH dataset, the proposed W-CRCNN achieves an accuracy of 0.970±0.022, precision of 0.974±0.028, recall of 0.917±0.065, F1-score of 0.943±0.042 and Jaccard Index of 0.899±0.073. For DISH datasets, the proposed W-CRCNN achieves an accuracy of 0.971±0.024, precision of 0.969±0.015, recall of 0.925±0.020, F1-score of 0.947±0.036 and Jaccard Index of 0.884±0.103 for dataset 1, and an accuracy of 0.978±0.011, precision of 0.975±0.011, recall of 0.918±0.038, F1-score of 0.946±0.030 and Jaccard Index of 0.884±0.052 for dataset 2, respectively. In comparison with the benchmark methods, the proposed W-CRCNN significantly outperforms all the benchmark approaches in identification of HER2 overexpression in FISH and DISH datasets (p<0.05). With the high degree of accuracy, precision and recall , the results show that the proposed method in DISH analysis for assessment of HER2 overexpression in breast cancer patients has significant potential to assist precision medicine.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Hibridación Fluorescente in Situ/métodos , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Hibridación in Situ , Receptor ErbB-2/genética , Receptor ErbB-2/análisis , Receptor ErbB-2/metabolismo
6.
BMC Complement Med Ther ; 23(1): 204, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37340378

RESUMEN

BACKGROUND: Acemannan is an acetylated polysaccharide of Aloe vera extract with antimicrobial, antitumor, antiviral, and antioxidant activities. This study aims to optimize the synthesis of acemannan from methacrylate powder using a simple method and characterize it for potential use as a wound-healing agent. METHODS: Acemannan was purified from methacrylated acemannan and characterized using high-performance liquid chromatography (HPLC), Fourier-transform infrared spectroscopy (FTIR), and 1H-nuclear magnetic resonance (NMR). 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assays were performed to investigate the antioxidant activity of acemannan and its effects on cell proliferation and oxidative stress damage, respectively. Further, a migration assay was conducted to determine the wound healing properties of acemannan. RESULTS: We successfully optimized the synthesis of acemannan from methacrylate powder using a simple method. Our results demonstrated that methacrylated acemannan was identified as a polysaccharide with an acetylation degree similar to that in A. vera, with the FTIR revealing peaks at 1739.94 cm-1 (C = O stretching vibration), 1370 cm-1 (deformation of the H-C-OH bonds), and 1370 cm-1 (C-O-C asymmetric stretching vibration); 1H NMR showed an acetylation degree of 1.202. The DPPH results showed the highest antioxidant activity of acemannan with a 45% radical clearance rate, compared to malvidin, CoQ10, and water. Moreover, 2000 µg/mL acemannan showed the most optimal concentration for inducing cell proliferation, while 5 µg/mL acemannan induced the highest cell migration after 3 h. In addition, MTT assay findings showed that after 24 h, acemannan treatment successfully recovered cell damage due to H2O2 pre-treatment. CONCLUSION: Our study provides a suitable technique for effective acemannan production and presents acemannan as a potential agent for use in accelerating wound healing through its antioxidant properties, as well as cell proliferation- and migration-inducing activities.


Asunto(s)
Antioxidantes , Peróxido de Hidrógeno , Antioxidantes/farmacología , Peróxido de Hidrógeno/farmacología , Polvos/farmacología , Polisacáridos/farmacología , Proliferación Celular
7.
Bioinformatics ; 39(6)2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37252823

RESUMEN

MOTIVATION: Bone marrow (BM) examination is one of the most important indicators in diagnosing hematologic disorders and is typically performed under the microscope via oil-immersion objective lens with a total 100× objective magnification. On the other hand, mitotic detection and identification is critical not only for accurate cancer diagnosis and grading but also for predicting therapy success and survival. Fully automated BM examination and mitotic figure examination from whole-slide images is highly demanded but challenging and poorly explored. First, the complexity and poor reproducibility of microscopic image examination are due to the cell type diversity, delicate intralineage discrepancy within the multitype cell maturation process, cells overlapping, lipid interference and stain variation. Second, manual annotation on whole-slide images is tedious, laborious and subject to intraobserver variability, which causes the supervised information restricted to limited, easily identifiable and scattered cells annotated by humans. Third, when the training data are sparsely labeled, many unlabeled objects of interest are wrongly defined as background, which severely confuses AI learners. RESULTS: This article presents an efficient and fully automatic CW-Net approach to address the three issues mentioned above and demonstrates its superior performance on both BM examination and mitotic figure examination. The experimental results demonstrate the robustness and generalizability of the proposed CW-Net on a large BM WSI dataset with 16 456 annotated cells of 19 BM cell types and a large-scale WSI dataset for mitotic figure assessment with 262 481 annotated cells of five cell types. AVAILABILITY AND IMPLEMENTATION: An online web-based system of the proposed method has been created for demonstration (see https://youtu.be/MRMR25Mls1A).


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Microscopía , Humanos , Examen de la Médula Ósea , Reproducibilidad de los Resultados , Procesamiento de Imagen Asistido por Computador/métodos
8.
Nat Methods ; 20(6): 824-835, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37069271

RESUMEN

BigNeuron is an open community bench-testing platform with the goal of setting open standards for accurate and fast automatic neuron tracing. We gathered a diverse set of image volumes across several species that is representative of the data obtained in many neuroscience laboratories interested in neuron tracing. Here, we report generated gold standard manual annotations for a subset of the available imaging datasets and quantified tracing quality for 35 automatic tracing algorithms. The goal of generating such a hand-curated diverse dataset is to advance the development of tracing algorithms and enable generalizable benchmarking. Together with image quality features, we pooled the data in an interactive web application that enables users and developers to perform principal component analysis, t-distributed stochastic neighbor embedding, correlation and clustering, visualization of imaging and tracing data, and benchmarking of automatic tracing algorithms in user-defined data subsets. The image quality metrics explain most of the variance in the data, followed by neuromorphological features related to neuron size. We observed that diverse algorithms can provide complementary information to obtain accurate results and developed a method to iteratively combine methods and generate consensus reconstructions. The consensus trees obtained provide estimates of the neuron structure ground truth that typically outperform single algorithms in noisy datasets. However, specific algorithms may outperform the consensus tree strategy in specific imaging conditions. Finally, to aid users in predicting the most accurate automatic tracing results without manual annotations for comparison, we used support vector machine regression to predict reconstruction quality given an image volume and a set of automatic tracings.


Asunto(s)
Benchmarking , Microscopía , Microscopía/métodos , Imagenología Tridimensional/métodos , Neuronas/fisiología , Algoritmos
9.
Comput Med Imaging Graph ; 107: 102233, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37075618

RESUMEN

Inhibition of pathological angiogenesis has become one of the first FDA approved targeted therapies widely tested in anti-cancer treatment, i.e. VEGF-targeting monoclonal antibody bevacizumab, in combination with chemotherapy for frontline and maintenance therapy for women with newly diagnosed ovarian cancer. Identification of the best predictive biomarkers of bevacizumab response is necessary in order to select patients most likely to benefit from this therapy. Hence, this study investigates the protein expression patterns on immunohistochemical whole slide images of three angiogenesis related proteins, including Vascular endothelial growth factor, Angiopoietin 2 and Pyruvate kinase isoform M2, and develops an interpretable and annotation-free attention based deep learning ensemble framework to predict the bevacizumab therapeutic effect on patients with epithelial ovarian cancer or peritoneal serous papillary carcinoma using tissue microarrays (TMAs). In evaluation with five-fold cross validation, the proposed ensemble model using the protein expressions of both Pyruvate kinase isoform M2 and Angiopoietin 2 achieves a notably high F-score (0.99±0.02), accuracy (0.99±0.03), precision (0.99±0.02), recall (0.99±0.02) and AUC (1.00±0). Kaplan-Meier progression free survival analysis confirms that the proposed ensemble is able to identify patients in the predictive therapeutic sensitive group with low cancer recurrence (p<0.001), and the Cox proportional hazards model analysis further confirms the above statement (p=0.012). In conclusion, the experimental results demonstrate that the proposed ensemble model using the protein expressions of both Pyruvate kinase isoform M2 and Angiopoietin 2 can assist treatment planning of bevacizumab targeted therapy for patients with ovarian cancer.


Asunto(s)
Aprendizaje Profundo , Neoplasias Ováricas , Humanos , Femenino , Bevacizumab/uso terapéutico , Angiopoyetina 2/uso terapéutico , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/uso terapéutico , Piruvato Quinasa/uso terapéutico , Anticuerpos Monoclonales Humanizados/farmacología , Anticuerpos Monoclonales Humanizados/uso terapéutico , Neoplasias Ováricas/diagnóstico por imagen , Neoplasias Ováricas/tratamiento farmacológico
10.
Cancers (Basel) ; 15(3)2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36765900

RESUMEN

Advances in computation pathology have continued at an impressive pace in recent years [...].

11.
Int J Mol Sci ; 24(3)2023 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-36768841

RESUMEN

Thyroid cancer is the most common endocrine cancer. Papillary thyroid cancer (PTC) is the most prevalent form of malignancy among all thyroid cancers arising from follicular cells. Fine needle aspiration cytology (FNAC) is a non-invasive method regarded as the most cost-effective and accurate diagnostic method of choice in diagnosing PTC. Identification of BRAF (V600E) mutation in thyroid neoplasia may be beneficial because it is specific for malignancy, implies a worse prognosis, and is the target for selective BRAF inhibitors. To the authors' best knowledge, this is the first automated precision oncology framework effectively predict BRAF (V600E) immunostaining result in thyroidectomy specimen directly from Papanicolaou-stained thyroid fine-needle aspiration cytology and ThinPrep cytological slides, which is helpful for novel targeted therapies and prognosis prediction. The proposed deep learning (DL) framework is evaluated on a dataset of 118 whole slide images. The results show that the proposed DL-based technique achieves an accuracy of 87%, a precision of 94%, a sensitivity of 91%, a specificity of 71% and a mean of sensitivity and specificity at 81% and outperformed three state-of-the-art deep learning approaches. This study demonstrates the feasibility of DL-based prediction of critical molecular features in cytological slides, which not only aid in accurate diagnosis but also provide useful information in guiding clinical decision-making in patients with thyroid cancer. With the accumulation of data and the continuous advancement of technology, the performance of DL systems is expected to be improved in the near future. Therefore, we expect that DL can provide a cost-effective and time-effective alternative tool for patients in the era of precision oncology.


Asunto(s)
Carcinoma Papilar , Aprendizaje Profundo , Neoplasias de la Tiroides , Humanos , Proteínas Proto-Oncogénicas B-raf/genética , Biomarcadores de Tumor/genética , Carcinoma Papilar/genética , Medicina de Precisión , Neoplasias de la Tiroides/diagnóstico , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/patología , Cáncer Papilar Tiroideo/diagnóstico , Mutación , Análisis Mutacional de ADN/métodos
13.
Cancers (Basel) ; 14(21)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36358732

RESUMEN

According to the World Health Organization Report 2022, cancer is the most common cause of death contributing to nearly one out of six deaths worldwide. Early cancer diagnosis and prognosis have become essential in reducing the mortality rate. On the other hand, cancer detection is a challenging task in cancer pathology. Trained pathologists can detect cancer, but their decisions are subjective to high intra- and inter-observer variability, which can lead to poor patient care owing to false-positive and false-negative results. In this study, we present a soft label fully convolutional network (SL-FCN) to assist in breast cancer target therapy and thyroid cancer diagnosis, using four datasets. To aid in breast cancer target therapy, the proposed method automatically segments human epidermal growth factor receptor 2 (HER2) amplification in fluorescence in situ hybridization (FISH) and dual in situ hybridization (DISH) images. To help in thyroid cancer diagnosis, the proposed method automatically segments papillary thyroid carcinoma (PTC) on Papanicolaou-stained fine needle aspiration and thin prep whole slide images (WSIs). In the evaluation of segmentation of HER2 amplification in FISH and DISH images, we compare the proposed method with thirteen deep learning approaches, including U-Net, U-Net with InceptionV5, Ensemble of U-Net with Inception-v4, Inception-Resnet-v2 encoder, and ResNet-34 encoder, SegNet, FCN, modified FCN, YOLOv5, CPN, SOLOv2, BCNet, and DeepLabv3+ with three different backbones, including MobileNet, ResNet, and Xception, on three clinical datasets, including two DISH datasets on two different magnification levels and a FISH dataset. The result on DISH breast dataset 1 shows that the proposed method achieves high accuracy of 87.77 ± 14.97%, recall of 91.20 ± 7.72%, and F1-score of 81.67 ± 17.76%, while, on DISH breast dataset 2, the proposed method achieves high accuracy of 94.64 ± 2.23%, recall of 83.78 ± 6.42%, and F1-score of 85.14 ± 6.61% and, on the FISH breast dataset, the proposed method achieves high accuracy of 93.54 ± 5.24%, recall of 83.52 ± 13.15%, and F1-score of 86.98 ± 9.85%, respectively. Furthermore, the proposed method outperforms most of the benchmark approaches by a significant margin (p <0.001). In evaluation of segmentation of PTC on Papanicolaou-stained WSIs, the proposed method is compared with three deep learning methods, including Modified FCN, U-Net, and SegNet. The experimental result demonstrates that the proposed method achieves high accuracy of 99.99 ± 0.01%, precision of 92.02 ± 16.6%, recall of 90.90 ± 14.25%, and F1-score of 89.82 ± 14.92% and significantly outperforms the baseline methods, including U-Net and FCN (p <0.001). With the high degree of accuracy, precision, and recall, the results show that the proposed method could be used in assisting breast cancer target therapy and thyroid cancer diagnosis with faster evaluation and minimizing human judgment errors.

14.
Diagnostics (Basel) ; 12(9)2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36140635

RESUMEN

Lung cancer is the biggest cause of cancer-related death worldwide. An accurate nodal staging is critical for the determination of treatment strategy for lung cancer patients. Endobronchial-ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) has revolutionized the field of pulmonology and is considered to be extremely sensitive, specific, and secure for lung cancer staging through rapid on-site evaluation (ROSE), but manual visual inspection on the entire slide of EBUS smears is challenging, time consuming, and worse, subjective, on a large interobserver scale. To satisfy ROSE's needs, a rapid, automated, and accurate diagnosis system using EBUS-TBNA whole-slide images (WSIs) is highly desired to improve diagnosis accuracy and speed, minimize workload and labor costs, and ensure reproducibility. We present a fast, efficient, and fully automatic deep-convolutional-neural-network-based system for advanced lung cancer staging on gigapixel EBUS-TBNA cytological WSIs. Each WSI was converted into a patch-based hierarchical structure and examined by the proposed deep convolutional neural network, generating the segmentation of metastatic lesions in EBUS-TBNA WSIs. To the best of the authors' knowledge, this is the first research on fully automated enlarged mediastinal lymph node analysis using EBUS-TBNA cytological WSIs. We evaluated the robustness of the proposed framework on a dataset of 122 WSIs, and the proposed method achieved a high precision of 93.4%, sensitivity of 89.8%, DSC of 82.2%, and IoU of 83.2% for the first experiment (37.7% training and 62.3% testing) and a high precision of 91.8 ± 1.2, sensitivity of 96.3 ± 0.8, DSC of 94.0 ± 1.0, and IoU of 88.7 ± 1.8 for the second experiment using a three-fold cross-validation, respectively. Furthermore, the proposed method significantly outperformed the three state-of-the-art baseline models, including U-Net, SegNet, and FCN, in terms of precision, sensitivity, DSC, and Jaccard index, based on Fisher's least significant difference (LSD) test (p<0.001). For a computational time comparison on a WSI, the proposed method was 2.5 times faster than U-Net, 2.3 times faster than SegNet, and 3.4 times faster than FCN, using a single GeForce GTX 1080 Ti, respectively. With its high precision and sensitivity, the proposed method demonstrated that it manifested the potential to reduce the workload of pathologists in their routine clinical practice.

15.
Sci Rep ; 12(1): 11623, 2022 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-35803996

RESUMEN

Joint analysis of multiple protein expressions and tissue morphology patterns is important for disease diagnosis, treatment planning, and drug development, requiring cross-staining alignment of multiple immunohistochemical and histopathological slides. However, cross-staining alignment of enormous gigapixel whole slide images (WSIs) at single cell precision is difficult. Apart from gigantic data dimensions of WSIs, there are large variations on the cell appearance and tissue morphology across different staining together with morphological deformations caused by slide preparation. The goal of this study is to build an image registration framework for cross-staining alignment of gigapixel WSIs of histopathological and immunohistochemical microscopic slides and assess its clinical applicability. To the authors' best knowledge, this is the first study to perform real time fully automatic cross staining alignment of WSIs with 40× and 20× objective magnification. The proposed WSI registration framework consists of a rapid global image registration module, a real time interactive field of view (FOV) localization model and a real time propagated multi-level image registration module. In this study, the proposed method is evaluated on two kinds of cancer datasets from two hospitals using different digital scanners, including a dual staining breast cancer data set with 43 hematoxylin and eosin (H&E) WSIs and 43 immunohistochemical (IHC) CK(AE1/AE3) WSIs, and a triple staining prostate cancer data set containing 30 H&E WSIs, 30 IHC CK18 WSIs, and 30 IHC HMCK WSIs. In evaluation, the registration performance is measured by not only registration accuracy but also computational time. The results show that the proposed method achieves high accuracy of 0.833 ± 0.0674 for the triple-staining prostate cancer data set and 0.931 ± 0.0455 for the dual-staining breast cancer data set, respectively, and takes only 4.34 s per WSI registration on average. In addition, for 30.23% data, the proposed method takes less than 1 s for WSI registration. In comparison with the benchmark methods, the proposed method demonstrates superior performance in registration accuracy and computational time, which has great potentials for assisting medical doctors to identify cancerous tissues and determine the cancer stage in clinical practice.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Próstata , Neoplasias de la Mama/diagnóstico por imagen , Eosina Amarillenta-(YS) , Hematoxilina , Humanos , Masculino , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/patología , Coloración y Etiquetado
16.
Environ Pollut ; 308: 119605, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35691444

RESUMEN

Global warming both reduces global temperature variance and increases the frequency of extreme weather events. In response to these ambient perturbations, animals may be subject to trans- or intra-generational phenotype modifications that help to maintain homeostasis and fitness. Here, we show how temperature-associated transgenerational plasticity in tilapia affects metabolic trade-offs during developmental stages under a global warming scenario. Tropical tilapia reared at a stable temperature of 27 °C for a decade were divided into two temperature-experience groups for four generations of breeding. Each generation of one group was exposed to a single 15 °C cold-shock experience during its lifetime (cold-experienced CE group), and the other group was kept stably at 27 °C throughout their lifetimes (cold-naïve CN group). The offspring at early life stages from the CE and CN tilapia were then assessed by metabolomics-based profiling, and the results implied that parental cold-experience might affect energy provision during reproduction. Furthermore, at early life stages, progeny may be endowed with metabolic traits that help the animals cope with ambient temperature perturbations. This study also applied the feature rescaling and Uniform Manifold Approximation and Projection (UMAP) to visualize metabolic dynamics, and the result could effectively decompose the complex omic-based datasets to represent the energy trade-off variability. For example, the carbohydrate to free amino acid conversion and enhanced compensatory features appeared to be hypothermic-responsive traits. These multigenerational metabolic effects suggest that the tropical ectothermic tilapia may exhibit transgenerational phenotype plasticity, which could optimize energy allocation under ambient temperature challenges. Knowledge about such metabolism-related transgenerational plasticity effects in ectothermic aquatic species may allow us to better predict how adaptive mechanisms will affect fish populations in a climate with narrow temperature variation and frequent extreme weather events.


Asunto(s)
Biodiversidad , Calentamiento Global , Adaptación Fisiológica , Animales , Peces , Temperatura
17.
Diagnostics (Basel) ; 12(6)2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35741298

RESUMEN

Precision oncology, which ensures optimized cancer treatment tailored to the unique biology of a patient's disease, has rapidly developed and is of great clinical importance. Deep learning has become the main method for precision oncology. This paper summarizes the recent deep-learning approaches relevant to precision oncology and reviews over 150 articles within the last six years. First, we survey the deep-learning approaches categorized by various precision oncology tasks, including the estimation of dose distribution for treatment planning, survival analysis and risk estimation after treatment, prediction of treatment response, and patient selection for treatment planning. Secondly, we provide an overview of the studies per anatomical area, including the brain, bladder, breast, bone, cervix, esophagus, gastric, head and neck, kidneys, liver, lung, pancreas, pelvis, prostate, and rectum. Finally, we highlight the challenges and discuss potential solutions for future research directions.

18.
Sci Rep ; 12(1): 10751, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35750778

RESUMEN

Heparin-binding protein (HBP) has been shown to be a robust predictor of the progression to organ dysfunction from sepsis, and we hypothesized that dynamic changes in HBP may reflect the severity of sepsis. We therefore aim to investigate the predictive value of baseline HBP, 24-h, and 48-h HBP change for prediction of 30-day mortality in adult patients with sepsis. This is a prospective observational study in an intensive care unit of a tertiary center. Patients aged 20 years or older who met SEPSIS-3 criteria were prospectively enrolled from August 2019 to January 2020. Plasma levels of HBP were measured at admission, 24 h, and 48 h and dynamic changes in HBP were calculated. The Primary endpoint was 30-day mortality. We tested whether the biomarkers could enhance the predictive accuracy of a multivariable predictive model. A total of 206 patients were included in the final analysis. 48-h HBP change (HBPc-48 h) had greater predictive accuracy of area under the curve (AUC: 0.82), followed by baseline HBP (0.79), PCT (0.72), lactate (0.71), and CRP (0.65), and HBPc-24 h (0.62). Incorporation of HBPc-48 h into a clinical prediction model significantly improved the AUC from 0.85 to 0.93. HBPc-48 h may assist clinicians with clinical outcome prediction in critically ill patients with sepsis and can improve the performance of a prediction model including age, SOFA score and Charlson comorbidity index.


Asunto(s)
Modelos Estadísticos , Sepsis , Adulto , Péptidos Catiónicos Antimicrobianos , Biomarcadores , Proteínas Sanguíneas , Humanos , Unidades de Cuidados Intensivos , Pronóstico , Curva ROC , Estudios Retrospectivos
19.
Comput Med Imaging Graph ; 99: 102093, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35752000

RESUMEN

Despite the progress made during the last two decades in the surgery and chemotherapy of ovarian cancer, more than 70 % of advanced patients are with recurrent cancer and decease. Surgical debulking of tumors following chemotherapy is the conventional treatment for advanced carcinoma, but patients with such treatment remain at great risk for recurrence and developing drug resistance, and only about 30 % of the women affected will be cured. Bevacizumab is a humanized monoclonal antibody, which blocks VEGF signaling in cancer, inhibits angiogenesis and causes tumor shrinkage, and has been recently approved by FDA as a monotherapy for advanced ovarian cancer in combination with chemotherapy. Considering the cost, potential toxicity, and finding that only a portion of patients will benefit from these drugs, the identification of new predictive method for the treatment of ovarian cancer remains an urgent unmet medical need. In this study, we develop weakly supervised deep learning approaches to accurately predict therapeutic effect for bevacizumab of ovarian cancer patients from histopathological hematoxylin and eosin stained whole slide images, without any pathologist-provided locally annotated regions. To the authors' best knowledge, this is the first model demonstrated to be effective for prediction of the therapeutic effect of patients with epithelial ovarian cancer to bevacizumab. Quantitative evaluation of a whole section dataset shows that the proposed method achieves high accuracy, 0.882 ± 0.06; precision, 0.921 ± 0.04, recall, 0.912 ± 0.03; F-measure, 0.917 ± 0.07 using 5-fold cross validation and outperforms two state-of-the art deep learning approaches Coudray et al. (2018), Campanella et al. (2019). For an independent TMA testing set, the three proposed methods obtain promising results with high recall (sensitivity) 0.946, 0.893 and 0.964, respectively. The results suggest that the proposed method could be useful for guiding treatment by assisting in filtering out patients without positive therapeutic response to suffer from further treatments while keeping patients with positive response in the treatment process. Furthermore, according to the statistical analysis of the Cox Proportional Hazards Model, patients who were predicted to be invalid by the proposed model had a very high risk of cancer recurrence (hazard ratio = 13.727) than patients predicted to be effective with statistical signifcance (p < 0.05).


Asunto(s)
Aprendizaje Profundo , Neoplasias Ováricas , Bevacizumab/uso terapéutico , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Femenino , Humanos , Neoplasias Ováricas/diagnóstico por imagen , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Resultado del Tratamiento
20.
IEEE Trans Med Imaging ; 41(10): 2828-2847, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35507621

RESUMEN

Age-related macular degeneration (AMD) is the leading cause of visual impairment among elderly in the world. Early detection of AMD is of great importance, as the vision loss caused by this disease is irreversible and permanent. Color fundus photography is the most cost-effective imaging modality to screen for retinal disorders. Cutting edge deep learning based algorithms have been recently developed for automatically detecting AMD from fundus images. However, there are still lack of a comprehensive annotated dataset and standard evaluation benchmarks. To deal with this issue, we set up the Automatic Detection challenge on Age-related Macular degeneration (ADAM), which was held as a satellite event of the ISBI 2020 conference. The ADAM challenge consisted of four tasks which cover the main aspects of detecting and characterizing AMD from fundus images, including detection of AMD, detection and segmentation of optic disc, localization of fovea, and detection and segmentation of lesions. As part of the ADAM challenge, we have released a comprehensive dataset of 1200 fundus images with AMD diagnostic labels, pixel-wise segmentation masks for both optic disc and AMD-related lesions (drusen, exudates, hemorrhages and scars, among others), as well as the coordinates corresponding to the location of the macular fovea. A uniform evaluation framework has been built to make a fair comparison of different models using this dataset. During the ADAM challenge, 610 results were submitted for online evaluation, with 11 teams finally participating in the onsite challenge. This paper introduces the challenge, the dataset and the evaluation methods, as well as summarizes the participating methods and analyzes their results for each task. In particular, we observed that the ensembling strategy and the incorporation of clinical domain knowledge were the key to improve the performance of the deep learning models.


Asunto(s)
Degeneración Macular , Anciano , Técnicas de Diagnóstico Oftalmológico , Fondo de Ojo , Humanos , Degeneración Macular/diagnóstico por imagen , Fotograbar/métodos , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...