Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; : e2306810, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38647380

RESUMEN

Persistent transcription of HBV covalently closed circular DNA (cccDNA) is critical for chronic HBV infection. Silencing cccDNA transcription through epigenetic mechanisms offers an effective strategy to control HBV. Long non-coding RNAs (lncRNAs), as important epigenetic regulators, have an unclear role in cccDNA transcription regulation. In this study, lncRNA sequencing (lncRNA seq) is conducted on five pairs of HBV-positive and HBV-negative liver tissue. Through analysis, HOXA-AS2 (HOXA cluster antisense RNA 2) is identified as a significantly upregulated lncRNA in HBV-infected livers. Further experiments demonstrate that HBV DNA polymerase (DNA pol) induces HOXA-AS2 after establishing persistent high-level HBV replication. Functional studies reveal that HOXA-AS2 physically binds to cccDNA and significantly inhibits its transcription. Mechanistically, HOXA-AS2 recruits the MTA1-HDAC1/2 deacetylase complex to cccDNA minichromosome by physically interacting with metastasis associated 1 (MTA1) subunit, resulting in reduced acetylation of histone H3 at lysine 9 (H3K9ac) and lysine 27 (H3K27ac) associated with cccDNA and subsequently suppressing cccDNA transcription. Altogether, the study reveals a mechanism to self-limit HBV replication, wherein the upregulation of lncRNA HOXA-AS2, induced by HBV DNA pol, can epigenetically suppress cccDNA transcription.

2.
Virol J ; 21(1): 35, 2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38297280

RESUMEN

BACKGROUND: Progressive hepatitis B virus (HBV) infection can result in cirrhosis, hepatocellular cancer, and chronic hepatitis. While antiviral drugs that are now on the market are efficient in controlling HBV infection, finding a functional cure is still quite difficult. Identifying host factors involved in regulating the HBV life cycle will contribute to the development of new antiviral strategies. Zinc finger proteins have a significant function in HBV replication, according to earlier studies. Zinc finger protein 148 (ZNF148), a zinc finger transcription factor, regulates the expression of various genes by specifically binding to GC-rich sequences within promoter regions. The function of ZNF148 in HBV replication was investigated in this study. METHODS: HepG2-Na+/taurocholate cotransporting polypeptide (HepG2-NTCP) cells and Huh7 cells were used to evaluate the function of ZNF148 in vitro. Northern blotting and real-time PCR were used to quantify the amount of viral RNA. Southern blotting and real-time PCR were used to quantify the amount of viral DNA. Viral protein levels were elevated, according to the Western blot results. Dual-luciferase reporter assays were used to examine the transcriptional activity of viral promoters. ZNF148's impact on HBV in vivo was investigated using an established rcccDNA mouse model. RESULTS: ZNF148 overexpression significantly decreased the levels of HBV RNAs and HBV core DNA in HBV-infected HepG2-NTCP cells and Huh7 cells expressing prcccDNA. Silencing ZNF148 exhibited the opposite effects in both cell lines. Furthermore, ZNF148 inhibited the activity of HBV ENII/Cp and the transcriptional activity of cccDNA. Mechanistic studies revealed that ZNF148 attenuated retinoid X receptor alpha (RXRα) expression by binding to the RXRα promoter sequence. RXRα binding site mutation or RXRα overexpression abolished the suppressive effect of ZNF148 on HBV replication. The inhibitory effect of ZNF148 was also observed in the rcccDNA mouse model. CONCLUSIONS: ZNF148 inhibited HBV replication by downregulating RXRα transcription. Our findings reveal that ZNF148 may be a new target for anti-HBV strategies.


Asunto(s)
Virus de la Hepatitis B , Hepatitis B , Animales , Ratones , Humanos , Virus de la Hepatitis B/fisiología , Replicación Viral , Células Hep G2 , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , ADN Viral/genética
3.
J Med Virol ; 95(1): e28176, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36163615

RESUMEN

Hydrogen sulfide (H2 S) is a redox gasotransmitter. It has been shown that H2 S has a key role in host antiviral defense by inhibiting interleukin production and S-sulfhydrating Keap1 lead to Nrf2/ARE pathway activation. However, it is yet unclear whether H2 S can play an antiviral role by regulating autophagy. In this study, we found that exogenous H2 S decreased the expression of human T-cell leukemia virus type-1 (HTLV-1) protein and HTLV-1 induced autophagosomes accumulation. Transmission electron microscope assays indicated that autophagosomes accumulation decreased after H2 S administration. HTLV-1-transformed T-cell lines had a high level of CSE (H2 S endogenous enzyme) which could be induced in Hela by HTLV-1 infection. Immunoblot demonstrated that overexpression of CSE inhibited HTLV-1 protein expression and autophagy. And we got the opposite after CSE knockdown. Meanwhile, H2 S could not restrain the autophagy when ATG4B had a mutant at its site of 89. In a word, these results suggested that H2 S modulated HTLV-1 protein expression via ATG4B. Therefore, our findings suggested a new mechanism by which H2 S defended against virus infection.


Asunto(s)
Virus Linfotrópico T Tipo 1 Humano , Sulfuro de Hidrógeno , Leucemia de Células T , Humanos , Virus Linfotrópico T Tipo 1 Humano/fisiología , Sulfuro de Hidrógeno/farmacología , Sulfuro de Hidrógeno/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Antivirales/metabolismo , Proteínas Relacionadas con la Autofagia/genética , Cisteína Endopeptidasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...