Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Nat Prod ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38747744

RESUMEN

Cyclotides are cysteine-rich plant-derived peptides composed of 28-37 amino acids with a head-to-tail cyclic backbone and a knotted arrangement of three conserved disulfide bonds. Their beneficial biophysical properties make them promising molecules for pharmaceutical and agricultural applications. The Violaceae plant family is the major cyclotide-producing family, and to date, every examined plant from this family has been found to contain cyclotides. The presence of cyclotides in Viola communis was inferred by mass spectroscopy previously, but their sequences and properties had yet to be explored. In this study, the occurrence of cyclotides in this plant was investigated using proteomics and transcriptomics. Twenty cyclotides were identified at the peptide level, including two new members from the bracelet (Vcom1) and Möbius (Vcom2) subfamilies. Structural analysis of these newly identified peptides demonstrated a similar fold compared with cyclotides from the same respective subfamilies. Biological assays of Vcom1 and Vcom2 revealed them to be cytotoxic to Sf9 insect cell lines, with Vcom1 demonstrating higher potency than Vcom2. The results suggest that they could be further explored as insecticidal agents and confirm earlier general findings that bracelet cyclotides have more potent insecticidal activity than their Möbius relatives. Seven new cyclotide-like sequences were observed in the transcriptome of V. communis, highlighting the Violaceae as a rich source for new cyclotides with potential insecticidal activity. An analysis of sequences flanking the cyclotide domain in the various precursors from V. communis and other Violaceae plants revealed new insights into cyclotide processing and suggested the possibility of two alternative classes of N-terminal processing enzymes for cyclotide biosynthesis.

2.
PLoS Biol ; 22(5): e3002620, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38743647

RESUMEN

Animals are influenced by the season, yet we know little about the changes that occur in most species throughout the year. This is particularly true in tropical marine animals that experience relatively small annual temperature and daylight changes. Like many coral reef inhabitants, the crown-of-thorns starfish (COTS), well known as a notorious consumer of corals and destroyer of coral reefs, reproduces exclusively in the summer. By comparing gene expression in 7 somatic tissues procured from wild COTS sampled on the Great Barrier Reef, we identified more than 2,000 protein-coding genes that change significantly between summer and winter. COTS genes that appear to mediate conspecific communication, including both signalling factors released into the surrounding sea water and cell surface receptors, are up-regulated in external secretory and sensory tissues in the summer, often in a sex-specific manner. Sexually dimorphic gene expression appears to be underpinned by sex- and season-specific transcription factors (TFs) and gene regulatory programs. There are over 100 TFs that are seasonally expressed, 87% of which are significantly up-regulated in the summer. Six nuclear receptors are up-regulated in all tissues in the summer, suggesting that systemic seasonal changes are hormonally controlled, as in vertebrates. Unexpectedly, there is a suite of stress-related chaperone proteins and TFs, including HIFa, ATF3, C/EBP, CREB, and NF-κB, that are uniquely and widely co-expressed in gravid females. The up-regulation of these stress proteins in the summer suggests the demands of oogenesis in this highly fecund starfish affects protein stability and turnover in somatic cells. Together, these circannual changes in gene expression provide novel insights into seasonal changes in this coral reef pest and have the potential to identify vulnerabilities for targeted biocontrol.


Asunto(s)
Reproducción , Estaciones del Año , Estrellas de Mar , Animales , Estrellas de Mar/genética , Estrellas de Mar/metabolismo , Estrellas de Mar/fisiología , Reproducción/genética , Femenino , Masculino , Estrés Fisiológico/genética , Regulación de la Expresión Génica , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Especificidad de Órganos/genética , Arrecifes de Coral
3.
ChemMedChem ; : e202400124, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632079

RESUMEN

Cyclotides are cyclic peptides that are promising scaffolds for the design of drug candidates and chemical tools. However, despite there being hundreds of reported cyclotides, drug design studies have commonly focussed on a select few prototypic examples. Here, we explored whether ancestral sequence reconstruction could be used to generate new cyclotides for further optimization. We show that the reconstructed 'pseudo-ancestral' sequences, named Ancy-m (for the ancestral cyclotide of the Möbius sub-family) and Ancy-b (for the bracelet sub-family), have well-defined structures like their extant members, comprising the core structural feature of a cyclic cystine knot. This motif underpins efforts to re-engineer cyclotides for agrochemical and therapeutic applications. We further show that the reconstructed sequences are resistant to temperatures approaching boiling, bind to phosphatidyl-ethanolamine lipid bilayers at micromolar affinity, and inhibit the growth of insect cells at inhibitory concentrations in the micromolar range. Interestingly, the Ancy-b cyclotide had a higher oxidative folding yield than its comparator cyclotide cyO2, which belongs to the bracelet cyclotide subfamily known to be notoriously difficult to fold. Overall, this study provides new cyclotide sequences not yet found naturally that could be valuable starting points for the understanding of cyclotide evolution and for further optimization as drug leads.

4.
J Biol Chem ; 300(4): 107125, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38432638

RESUMEN

Cyclotides are plant-derived peptides characterized by a head-to-tail cyclic backbone and a cystine knot motif comprised of three disulfide bonds. Formation of this motif via in vitro oxidative folding can be challenging and can result in misfolded isomers with nonnative disulfide connectivities. Here, we investigated the effect of ß-turn nucleation on cyclotide oxidative folding. Two types of ß-turn mimics were grafted into kalata B1, individually replacing each of the four ß-turns in the folded cyclotide. Insertion of d-Pro-Gly into loop 5 was beneficial to the folding of both cyclic kB1 and a linear form of the peptide. The linear grafted analog folded four-times faster in aqueous conditions than cyclic kB1 in optimized conditions. Additionally, the cyclic analogue folded without the need for redox agents by transitioning through a native-like intermediate that was on-pathway to product formation. Kalata B1 is from the Möbius subfamily of cyclotides. Grafting d-Pro-Gly into loop 5 of cyclotides from two other subfamilies also had a beneficial effect on folding. Our findings demonstrate the importance of a ß-turn nucleation site for cyclotide oxidative folding, which could be adopted as a chemical strategy to improve the in vitro folding of diverse cystine-rich peptides.


Asunto(s)
Ciclotidas , Oxidación-Reducción , Pliegue de Proteína , Ciclotidas/química , Proteínas de Plantas/química , Secuencia de Aminoácidos
5.
J Biol Chem ; 300(3): 105682, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38272233

RESUMEN

Cyclotides are plant-derived disulfide-rich cyclic peptides that have a natural function in plant defense and potential for use as agricultural pesticides. Because of their highly constrained topology, they are highly resistant to thermal, chemical, or enzymatic degradation. However, the stability of cyclotides at alkaline pH for incubation times of longer than a few days is poorly studied but important since these conditions could be encountered in the environment, during storage or field application as insecticides. In this study, kalata B1 (kB1), the prototypical cyclotide, was engineered to improve its long-term stability and retain its insecticidal activity via point mutations. We found that substituting either Asn29 or Gly1 to lysine or leucine increased the stability of kB1 by twofold when incubated in an alkaline buffer (pH = 9.0) for 7 days, while retaining its insecticidal activity. In addition, when Gly1 was replaced with lysine or leucine, the mutants could be cyclized using an asparaginyl endopeptidase, in vitro with a yield of ∼90% within 5 min. These results demonstrate the potential to manufacture kB1 mutants with increased stability and insecticidal activity recombinantly or in planta. Overall, the discovery of mutants of kB1 that have enhanced stability could be useful in leading to longer term activity in the field as bioinsecticides.


Asunto(s)
Ciclotidas , Insecticidas , Oldenlandia , Ciclotidas/genética , Ciclotidas/farmacología , Ciclotidas/química , Insecticidas/química , Insecticidas/farmacología , Leucina , Lisina/genética , Mutagénesis , Proteínas de Plantas/metabolismo , Oldenlandia/química , Estabilidad Proteica , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos
6.
J Med Chem ; 67(2): 1197-1208, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38174919

RESUMEN

Peptides are promising drug modalities that can modulate protein-protein interactions, but their application is hampered by their limited ability to reach intracellular targets. Here, we improved the cytosolic delivery of a peptide blocking p53:MDM2/X interactions using a cyclotide as a stabilizing scaffold. We applied several design strategies to improve intracellular delivery and found that the conjugation of the lead cyclotide to the cyclic cell-penetrating peptide cR10 was the most effective. Conjugation allowed cell internalization at micromolar concentration and led to elevated intracellular p53 levels in A549, MCF7, and MCF10A cells, as well as inducing apoptosis in A549 cells without causing membrane disruption. The lead peptide had >35-fold improvement in inhibitory activity and increased cellular uptake compared to a previously reported cyclotide p53 activator. In summary, we demonstrated the delivery of a large polar cyclic peptide in the cytosol and confirmed its ability to modulate intracellular protein-protein interactions involved in cancer.


Asunto(s)
Péptidos de Penetración Celular , Ciclotidas , Neoplasias , Humanos , Ciclotidas/farmacología , Ciclotidas/metabolismo , Péptidos de Penetración Celular/farmacología , Péptidos de Penetración Celular/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Péptidos Cíclicos/farmacología , Péptidos Cíclicos/metabolismo
7.
Peptides ; 167: 171049, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37390898

RESUMEN

Bacteriocins are a large family of bacterial peptides that have antimicrobial activity and potential applications as clinical antibiotics or food preservatives. Circular bacteriocins are a unique class of these biomolecules distinguished by a seamless circular topology, and are widely assumed to be ultra-stable based on this constraining structural feature. However, without quantitative studies of their susceptibility to defined thermal, chemical, and enzymatic conditions, their stability characteristics remain poorly understood, limiting their translational development. Here, we produced the circular bacteriocin enterocin NKR-5-3B (Ent53B) in mg/L quantities using a heterologous Lactococcus expression system, and characterized its thermal stability by NMR, chemical stability by circular dichroism and analytical HPLC, and enzymatic stability by analytical HPLC. We demonstrate that Ent53B is ultra-stable, resistant to temperatures approaching boiling, acidic (pH 2.6) and alkaline (pH 9.0) conditions, the chaotropic agent 6 M urea, and following incubation with a range of proteases (i.e., trypsin, chymotrypsin, pepsin, and papain), conditions under which most peptides and proteins degrade. Ent53B is stable across a broader range of pH conditions and proteases than nisin, the most widely used bacteriocin in food manufacturing. Antimicrobial assays showed that differences in stability correlated with differences in bactericidal activity. Overall, this study provides quantitative support for circular bacteriocins being an ultra-stable class of peptide molecules, suggesting easier handling and distribution options available to them in practical applications as antimicrobial agents.


Asunto(s)
Bacteriocinas , Nisina , Bacteriocinas/farmacología , Nisina/farmacología , Antibacterianos/farmacología , Péptido Hidrolasas
8.
Mol Ecol ; 32(13): 3541-3556, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37009965

RESUMEN

Marine animals in the wild are often difficult to access, so they are studied in captivity. However, the implicit assumption that physiological processes of animals in artificial environments are not different from those in the wild has rarely been tested. Here, we investigate the extent to which an animal is impacted by captivity by comparing global gene expression in wild and captive crown-of-thorns starfish (COTS). In a preliminary analysis, we compared transcriptomes of three external tissues obtained from multiple wild COTS with a single captive COTS maintained in aquaria for at least 1 week. On average, an astonishingly large 24% of the coding sequences in the genome were differentially expressed. This led us to conduct a replicated experiment to test more comprehensively the impact of captivity on gene expression. Specifically, a comparison of 13 wild with 8 captive COTS coelomocyte transcriptomes revealed significant differences in the expression of 20% of coding sequences. Coelomocyte transcriptomes in captive COTS remain different from those in wild COTS for more than 30 days and show no indication of reverting back to a wild state (i.e. no evidence of acclimation). Genes upregulated in captivity include those involved in oxidative stress and energy metabolism, whereas genes downregulated are involved in cell signalling. These changes in gene expression indicate that being translocated and maintained in captivity has a marked impact on the physiology and health of these echinoderms. This study suggests that caution should be exercised when extrapolating results from captive aquatic invertebrates to their wild counterparts.


Asunto(s)
Genómica , Estrellas de Mar , Animales , Estrellas de Mar/genética , Genoma , Transcriptoma/genética
10.
Sci Immunol ; 8(80): eadd1728, 2023 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-36800411

RESUMEN

In antibody responses, mutated germinal center B (BGC) cells are positively selected for reentry or differentiation. As the products from GCs, memory B cells and antibody-secreting cells (ASCs) support high-affinity and long-lasting immunity. Positive selection of BGC cells is controlled by signals received through the B cell receptor (BCR) and follicular helper T (TFH) cell-derived signals, in particular costimulation through CD40. Here, we demonstrate that the TFH cell effector cytokine interleukin-21 (IL-21) joins BCR and CD40 in supporting BGC selection and reveal that strong IL-21 signaling prioritizes ASC differentiation in vivo. BGC cells, compared with non-BGC cells, show significantly reduced IL-21 binding and attenuated signaling, which is mediated by low cellular heparan sulfate (HS) sulfation. Mechanistically, N-deacetylase and N-sulfotransferase 1 (Ndst1)-mediated N-sulfation of HS in B cells promotes IL-21 binding and signal strength. Ndst1 is down-regulated in BGC cells and up-regulated in ASC precursors, suggesting selective desensitization to IL-21 in BGC cells. Thus, specialized biochemical regulation of IL-21 bioavailability and signal strength sets a balance between the stringency and efficiency of GC selection.


Asunto(s)
Centro Germinal , Linfocitos T Colaboradores-Inductores , Disponibilidad Biológica , Diferenciación Celular , Receptores de Antígenos de Linfocitos B/metabolismo , Antígenos CD40
11.
BMC Biol ; 20(1): 288, 2022 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-36528687

RESUMEN

BACKGROUND: Many echinoderms form seasonal aggregations prior to spawning. In some fecund species, a spawning event can lead to population outbreaks with detrimental ecosystem impacts. For instance, outbreaks of crown-of-thorns starfish (COTS), a corallivore, can destroy coral reefs. Here, we examine the gene expression in gravid male and female COTS prior to spawning in the wild, to identify genome-encoded factors that may regulate aggregation and spawning. This study is informed by a previously identified exoproteome that attracts conspecifics. To capture the natural gene expression profiles, we isolated RNAs from gravid female and male COTS immediately after they were removed from the Great Barrier Reef.  RESULTS: Sexually dimorphic gene expression is present in all seven somatic tissues and organs that we surveyed and in the gonads. Approximately 40% of the exoproteome transcripts are differentially expressed between sexes. Males uniquely upregulate an additional 68 secreted factors in their testes. A suite of neuropeptides in sensory organs, coelomocytes and gonads is differentially expressed between sexes, including the relaxin-like gonad-stimulating peptide and gonadotropin-releasing hormones. Female sensory tentacles-chemosensory organs at the distal tips of the starfish arms-uniquely upregulate diverse receptors and signalling molecules, including chemosensory G-protein-coupled receptors and several neuropeptides, including kisspeptin, SALMFamide and orexin. CONCLUSIONS: Analysis of 103 tissue/organ transcriptomes from 13 wild COTS has revealed genes that are consistently differentially expressed between gravid females and males and that all tissues surveyed are sexually dimorphic at the molecular level. This finding is consistent with female and male COTS using sex-specific pheromones to regulate reproductive aggregations and synchronised spawning events. These pheromones appear to be received primarily by the sensory tentacles, which express a range of receptors and signalling molecules in a sex-specific manner. Furthermore, coelomocytes and gonads differentially express signalling and regulatory factors that control gametogenesis and spawning in other echinoderms.


Asunto(s)
Neuropéptidos , Estrellas de Mar , Animales , Femenino , Masculino , Estrellas de Mar/genética , Ecosistema , Feromonas , Arrecifes de Coral
12.
J Med Chem ; 65(23): 15698-15709, 2022 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-36383928

RESUMEN

Factor XIIa (FXIIa) is a promising target for developing new drugs that prevent thrombosis without causing bleeding complications. A native cyclotide (MCoTI-II) is gaining interest for engineering FXIIa-targeted anticoagulants as this peptide inhibits FXIIa but not other coagulation proteases. Here, we engineered the native biosynthetic cyclization loop of MCoTI-II (loop 6) to generate improved FXIIa inhibitors. Decreasing the loop length led to gains in potency up to 7.7-fold, with the most potent variant having five residues in loop 6 (Ki = 25 nM). We subsequently examined sequence changes within loop 6 and an adjacent loop, with substitutions at P4 and P2' producing a potent FXIIa inhibitor (Ki = 2 nM) that displayed more than 700-fold selectivity, was stable in human serum, and blocked the intrinsic coagulation pathway in human plasma. These findings demonstrate that engineering the biosynthetic cyclization loop can generate improved cyclotide variants, expanding their potential for drug discovery.


Asunto(s)
Factor XIIa , Humanos
13.
J Am Chem Soc ; 144(42): 19485-19498, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36222719

RESUMEN

Optimization of peptide stability is essential for the development of peptides as bona fide alternatives to approved monoclonal antibodies. This is clearly the case for the many peptides reported to antagonize proprotein convertase subtilisin-like/kexin type 9 (PCSK9), a clinically validated target for lowering cholesterol. However, the effects of optimization of stability on in vivo activity and particularly the effects of binding to albumin, an emerging drug design paradigm, have not been studied for such peptide leads. In this study, we optimized a PCSK9 inhibitory peptide by mutagenesis and then by conjugation to a short lipidated tag to design P9-alb fusion peptides that have strong affinity to human serum albumin. Although attachment of the tag reduced activity against PCSK9, which was more evident in surface plasmon resonance binding and enzyme-linked immunosorbent competition assays than in cellular assays of activity, activity remained in the nanomolar range (∼40 nM). P9-alb peptides were exceptionally stable in human serum and had half-lives exceeding 48 h, correlating with longer half-lives in mice (40.8 min) compared to the unconjugated peptide. Furthermore, the decrease in in vitro binding was not deleterious to in vivo function, showing that engendering albumin binding improved low-density lipoprotein receptor recovery and cholesterol-lowering activity. Indeed, the peptide P9-albN2 achieved similar functional endpoints as the approved anti-PCSK9 antibody evolocumab, albeit at higher doses. Our study illustrates that optimization of stability instead of binding affinity is an effective way to improve in vivo function.


Asunto(s)
Anticuerpos Monoclonales , Inmunoadsorbentes , Humanos , Ratones , Animales , LDL-Colesterol , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/metabolismo , Péptidos/farmacología , Colesterol , Albúminas , Albúmina Sérica Humana , Subtilisinas , Proproteína Convertasa 9
14.
Peptides ; 155: 170835, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35753503

Asunto(s)
Péptidos , Australia
15.
J Biol Chem ; 298(4): 101822, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35283188

RESUMEN

Cyclotides have a wide range of bioactivities relevant for agricultural and pharmaceutical applications. This large family of naturally occurring macrocyclic peptides is divided into three subfamilies, with the bracelet subfamily being the largest and comprising the most potent cyclotides reported to date. However, attempts to harness the natural bioactivities of bracelet cyclotides and engineer-optimized analogs have been hindered by a lack of understanding of the structural and functional role of their constituent residues, which has been challenging because bracelet cyclotides are difficult to produce synthetically. We recently established a facile strategy to make the I11L mutant of cyclotide hyen D that is as active as the parent peptide, enabling the subsequent production of a series of variants. In the current study, we report an alanine mutagenesis structure-activity study of [I11L] hyen D to probe the role of individual residues on peptide folding using analytical chromatography, on molecular function using surface plasmon resonance, and on therapeutic potential using cytotoxicity assays. We found that Glu-6 and Thr-15 are critical for maintaining the structure of bracelet cyclotides and that hydrophobic residues in loops 2 and 3 are essential for membrane binding and cytotoxic activity, findings that are distinct from the structural and functional characteristics determined for other cyclotide subfamilies. In conclusion, this is the first report of a mutagenesis scan conducted on a bracelet cyclotide, offering insights into their function and supporting future efforts to engineer bracelet cyclotides for biotechnological applications.


Asunto(s)
Ciclotidas , Ciclotidas/química , Ciclotidas/genética , Ciclotidas/toxicidad , Interacciones Hidrofóbicas e Hidrofílicas , Mutagénesis , Unión Proteica/genética
16.
J Am Chem Soc ; 143(44): 18536-18547, 2021 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-34661406

RESUMEN

Peptides have potential to be developed into immune checkpoint inhibitors, but the target interfaces are difficult to inhibit. Here, we explored an approach to mimic the binding surface of PD-1 to design inhibitors. Mimicking native PD-1 resulted in a mimetic with no activity. However, mimicking an affinity-optimized PD-1 resulted in the peptide mimetic MOPD-1 that displayed nanomolar affinity to PD-L1 and could inhibit PD-1:PD-L1 interactions in both protein- and cell-based assays. Mutagenesis and structural characterization using NMR spectroscopy and X-ray crystallography revealed that binding residues from the high affinity PD-1 are crucial for the bioactivity of MOPD-1. Furthermore, MOPD-1 was extremely stable in human serum and inhibited tumor growth in vivo, suggesting it has potential for use in cancer immunotherapy. The successful design of an inhibitor of PD-1:PD-L1 using the mimicry approach described herein illustrates the value of placing greater emphasis on optimizing the target interface before inhibitor design and is an approach that could have broader utility for the design of peptide inhibitors for other complex protein-protein interactions.


Asunto(s)
Antineoplásicos/farmacología , Antígeno B7-H1/metabolismo , Neoplasias/tratamiento farmacológico , Receptor de Muerte Celular Programada 1/metabolismo , Secuencia de Aminoácidos , Animales , Antineoplásicos/química , Antígeno B7-H1/genética , Femenino , Humanos , Inhibidores de Puntos de Control Inmunológico , Inmunoterapia , Ratones , Ratones Endogámicos BALB C , Neoplasias Experimentales , Receptor de Muerte Celular Programada 1/genética
17.
Molecules ; 26(18)2021 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-34577034

RESUMEN

Cyclotides have attracted great interest as drug design scaffolds because of their unique cyclic cystine knotted topology. They are classified into three subfamilies, among which the bracelet subfamily represents the majority and comprises the most bioactive cyclotides, but are the most poorly utilized in drug design applications. A long-standing challenge has been the very low in vitro folding yields of bracelets, hampering efforts to characterize their structures and activities. Herein, we report substantial increases in bracelet folding yields enabled by a single point mutation of residue Ile-11 to Leu or Gly. We applied this discovery to synthesize mirror image enantiomers and used quasi-racemic crystallography to elucidate the first crystal structures of bracelet cyclotides. This study provides a facile strategy to produce bracelet cyclotides, leading to a general method to easily access their atomic resolution structures and providing a basis for development of biotechnological applications.


Asunto(s)
Ciclotidas , Secuencia de Aminoácidos , Cristalografía , Cistina , Pliegue de Proteína
18.
Atherosclerosis ; 330: 52-60, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34246818

RESUMEN

Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a clinically validated target for treating cardiovascular disease (CVD) due to its involvement in cholesterol metabolism. Although approved monoclonal antibodies (alirocumab and evolocumab) that inhibit PCSK9 function are very effective in lowering cholesterol, their limitations, including high treatment costs, have so far prohibited widespread use. Accordingly, there is great interest in alternative drug modalities to antibodies. Like antibodies, peptides are valuable therapeutics due to their high target potency and specificity. Furthermore, being smaller than antibodies means they have access to more drug administration options, are less likely to induce adverse immunogenic responses, and are better suited to affordable production. This review surveys the current peptide-based landscape aimed towards PCSK9 inhibition, covering pre-clinical to patented drug candidates and comparing them to current cholesterol lowering therapeutics. Classes of peptides reported to be inhibitors include nature-inspired disulfide-rich peptides, combinatorially derived cyclic peptides, and peptidomimetics. Their functional activities have been validated in biophysical and cellular assays, and in some cases pre-clinical mouse models. Recent efforts report peptides with potent sub-nanomolar binding affinities to PCSK9, which highlights their potential to achieve antibody-like potency. Studies are beginning to address pharmacokinetic properties of PCSK9-targeting peptides in more detail. We conclude by highlighting opportunities to investigate their biological effects in pre-clinical models of cardiovascular disease. The anticipation concerning the PCSK9-targeting peptide landscape is accelerating and it seems likely that a peptide-based therapeutic for treating PCSK9-mediated hypercholesterolemia may be clinically available in the near future.


Asunto(s)
Anticolesterolemiantes , Hipercolesterolemia , Animales , Anticuerpos Monoclonales , Humanos , Hipercolesterolemia/tratamiento farmacológico , Ratones , Péptidos , Proproteína Convertasa 9
19.
ACS Chem Biol ; 16(7): 1276-1287, 2021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-34152716

RESUMEN

Inhibiting the Nrf2:Keap1 interaction to trigger cytoprotective gene expression is a promising treatment strategy for oxidative stress-related diseases. A short linear motif from Nrf2 has the potential to directly inhibit this protein-protein interaction, but poor stability and limited cellular uptake impede its therapeutic development. To address these limitations, we utilized an integrated molecular grafting strategy to re-engineer the Nrf2 motif. We combined the motif with an engineered non-native disulfide bond and a cell-penetrating peptide onto a single multifunctionalizable and ultrastable molecular scaffold, namely, the cyclotide MCoTI-II, resulting in the grafted peptide MCNr-2c. The engineered disulfide bond enhanced the conformational rigidity of the motif, resulting in a nanomolar affinity of MCNr-2c for Keap1. The cell-penetrating peptide led to an improved cellular uptake and increased ability to enhance the intracellular expression of two well-described Nrf2-target genes NQO1 and TALDO1. Furthermore, the stability of the scaffold was inherited by the grafted peptide, which became resistant to proteolysis in serum. Overall, we have provided proof-of-concept for a strategy that enables the encapsulation of multiple desired and complementary activities into a single molecular entity to design a Keap1-targeted inhibitor. We propose that this integrated approach could have broad utility for the design of peptide drug leads that require multiple functions and/or biopharmaceutical properties to elicit a therapeutic activity.


Asunto(s)
Péptidos de Penetración Celular/farmacología , Ciclotidas/farmacología , Proteína 1 Asociada A ECH Tipo Kelch/antagonistas & inhibidores , Secuencia de Aminoácidos , Sangre/metabolismo , Péptidos de Penetración Celular/química , Ciclotidas/química , Diseño de Fármacos , Células HeLa , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Masculino , Factor 2 Relacionado con NF-E2/química , Factor 2 Relacionado con NF-E2/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/farmacología , Prueba de Estudio Conceptual , Unión Proteica/efectos de los fármacos , Estabilidad Proteica
20.
Chembiochem ; 22(12): 2154-2160, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-33755275

RESUMEN

Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a clinically validated target for treating hypercholesterolemia. Peptide-based PCSK9 inhibitors have attracted pharmaceutical interest, but the effect of multivalency on bioactivity is poorly understood. Here we designed bivalent and tetravalent dendrimers, decorated with the PCSK9 inhibitory peptides Pep2-8[RRG] or P9-38, to study relationships between peptide binding affinity, peptide valency, and PCSK9 inhibition. Increased valency resulted in improved PCSK9 inhibition for both peptides, with activity improvements of up to 100-fold achieved for the P9-38-decorated dendrimers compared to monomeric P9-38 in in vitro competition binding assays. Furthermore, the P9-38-decorated dendrimers showed improved potency at restoring functional low-density lipoprotein (LDL) receptor levels and internalizing LDL in the presence of PCSK9, demonstrating significant cell-based activity at picomolar concentrations. This study demonstrates the potential of increasing valency as a strategy for increasing the efficacy of peptide-based PCSK9 therapeutics.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Péptidos/farmacología , Proproteína Convertasa 9/metabolismo , Dendrímeros/síntesis química , Dendrímeros/química , Dendrímeros/farmacología , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Estructura Molecular , Péptidos/síntesis química , Péptidos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...