Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 8824, 2024 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-38627563

RESUMEN

Understanding the physiological and biochemical responses of tree seedlings under extreme drought stress, along with recovery during rewatering, and potential intra-species differences, will allow us to more accurately predict forest responses under future climate change. Here, we selected seedlings from four provenances (AH (Anhui), JX (Jiangxi), HN (Hunan) and GX (Guangxi)) of Schima superba and carried out a simulated drought-rewatering experiment in a field-based rain-out shelter. Seedlings were progressively dried until they reached 50% and 88% loss of xylem hydraulic conductivity (PLC) (i.e. P50 and P88), respectively, before they were rehydrated and maintained at field capacity for 30 days. Leaf photosynthesis (Asat), water status, activity of superoxide dismutase (SOD), and proline (Pro) concentration were monitored and their associations were determined. Increasing drought significantly reduced Asat, relative water content (RWC) and SOD activity in all provenances, and Pro concentration was increased to improve water retention; all four provenances exhibited similar response patterns, associated with similar leaf ultrastructure at pre-drought. Upon rewatering, physiological and biochemical traits were restored to well-watered control values in P50-stressed seedlings. In P88-stressed seedlings, Pro was restored to control values, while SOD was not fully recovered. The recovery pattern differed partially among provenances. There was a progression of recovery following watering, with RWC firstly recovered, followed by SOD and Pro, and then Asat, but with significant associations among these traits. Collectively, the intra-specific differences of S. superba seedlings in recovery of physiology and biochemistry following rewatering highlight the need to consider variations within a given tree species coping with future more frequent drought stress.


Asunto(s)
Sequías , Superóxido Dismutasa , Prolina , China , Hojas de la Planta/química , Fotosíntesis/fisiología , Plantones/fisiología , Árboles , Agua/análisis
2.
Natl Sci Rev ; 11(3): nwae013, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38327852

RESUMEN

III-V compound semiconductors, such as InGaAs/InAlAs, exhibit exceptional carrier transport properties, establishing them as fundamental elements in terahertz (THz) applications crucial for the development of 6G networks. These materials present the potential for high-performance, energy-efficient THz devices. Furthermore, their compatibility with heterojunction integration, particularly in hetero-integration with silicon-germanium (SiGe) bipolar complementary metal-oxide-semiconductor (BiCMOS), paves the way for cutting-edge THz devices. This advantage highlights the crucial role of III-V semiconductors in driving THz and 6G technology, meeting the evolving demands of future wireless communication and sensing systems. NSR conducted an interview with Dr. Dae-Hyun Kim, a semiconductor expert with a distinguished academic and professional background. Dr. Kim embarked on his career at Teledyne Scientific Company in 2008, later joining SEMATECH in 2012, where he played a crucial role in propelling semiconductor technology forward. In 2015, he assumed the position of an Associate Professor at Kyungpook National University. Dr. Kim's journey embodies his long commitment to the field, underscored by his remarkable contributions. In this interview, Dr. Kim shared his insights on fostering collaboration within the semiconductor field. He particularly emphasized on effective approaches for advancing research and innovation in semiconductor technology.

3.
Front Pharmacol ; 14: 1183393, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37538180

RESUMEN

Introduction: Astragalus membranaceus Fisch. ex Bunge is a traditional botanical drug with antibacterial, antioxidant, antiviral, and other biological activities. In the process of industrialization of A. membranaceus, most of the aboveground stems and leaves are discarded without resource utilization except for a small amount of low-value applications such as composting. This study explored the antibacterial activity of A. membranaceus stem and leaf extracts to evaluate its potential as a feed antibiotic substitute. Materials and methods: The antibacterial activity of the flavonoid, saponin, and polysaccharide fractions in A. membranaceus stems and leaves was evaluated by the disk diffusion method. The inhibitory activity of the flavonoid fraction from A. membranaceus stems and leaves on B. cereus was explored from the aspects of the growth curve, cell wall, cell membrane, biofilm, bacterial protein, and virulence factors. On this basis, the flavonoid fraction in A. membranaceus stems and leaves were isolated and purified by column chromatography to determine the main antibacterial components. Results: The flavonoid fraction in A. membranaceus stems and leaves had significant inhibitory activity against B. cereus, and the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were 1.5625 and 6.25 mg/mL, respectively. A. membranaceus stem and leaf flavonoid fraction can induce death of B. cereus in many ways, such as inhibiting growth, destroying cell wall and cell membrane integrity, inhibiting biofilm formation, inhibiting bacterial protein synthesis, and downregulating virulence factor expression. In addition, it was clear that the main flavonoid with antibacterial activity in A. membranaceus stems and leaves was isoliquiritigenin. Molecular docking showed that isoliquiritigenin could form a hydrogen bonding force with FtsZ. Conclusion: A. membranaceus stem and leaf flavonoid fractions had significant inhibitory activity against B. cereus, and the main chemical composition was isoliquiritigenin.

4.
Nat Commun ; 14(1): 2188, 2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-37069185

RESUMEN

Quantifying the stomatal responses of plants to global change factors is crucial for modeling terrestrial carbon and water cycles. Here we synthesize worldwide experimental data to show that stomatal conductance (gs) decreases with elevated carbon dioxide (CO2), warming, decreased precipitation, and tropospheric ozone pollution, but increases with increased precipitation and nitrogen (N) deposition. These responses vary with treatment magnitude, plant attributes (ambient gs, vegetation biomes, and plant functional types), and climate. All two-factor combinations (except warming + N deposition) significantly reduce gs, and their individual effects are commonly additive but tend to be antagonistic as the effect sizes increased. We further show that rising CO2 and warming would dominate the future change of plant gs across biomes. The results of our meta-analysis provide a foundation for understanding and predicting plant gs across biomes and guiding manipulative experiment designs in a real world where global change factors do not occur in isolation.


Asunto(s)
Dióxido de Carbono , Fotosíntesis , Fotosíntesis/fisiología , Ecosistema , Clima , Plantas , Cambio Climático
5.
ACS Appl Electron Mater ; 5(1): 189-195, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36711042

RESUMEN

In this paper, we present a broadband microwave characterization of ferroelectric hafnium zirconium oxide (Hf0.5Zr0.5O2) metal-ferroelectric-metal (MFM) thin film varactor from 1 kHz up to 0.11 THz. The varactor is integrated into the back-end-of-line (BEoL) of 180 nm CMOS technology as a shunting capacitor for the coplanar waveguide (CPW) transmission line. At low frequencies, the varactor shows a slight imprint behavior, with a maximum tunability of 15% after the wake-up. In the radio- and mmWave frequency range, the varactor's maximum tunability decreases slightly from 13% at 30 MHz to 10% at 110 GHz. Ferroelectric varactors were known for their frequency-independent, linear tunability as well as low loss. However, this potential was never fully realized due to limitations in integration. Here, we show that ferroelectric HfO2 thin films with good back-end-of-line compatibility support very large scale integration. This opens up a broad range of possible applications in the mmWave and THz frequency range such as 6G communications, imaging radar, or THz imaging.

6.
Molecules ; 27(24)2022 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-36558147

RESUMEN

Melt-cast explosive 2,4-dinitroanisole (DNAN) crystal and its cocrystals DNAN/1,3-dinitrobenzene (DNB) and DNAN/2-nitroaniline (NA) were used to identify the effects of cocrystallization on the crystal structure, non-covalent interactions, and melting points of the DNAN crystal through density functional theory and molecular dynamics. The components DNB and NA with subtle structure variations between the nitro group and amino group can significantly affect the non-covalent interactions, especially the π-π stacking and H-bonds, which can lead to different crystal stacking styles. The melting points of the DNAN crystal are decreased through the cocrystallization, which expands the utilization of the DNAN-based melt cast explosives. Our study deciphers the effects caused by the cocrystallization on the structure and properties of melt cast explosives and may help to design and optimize novel melt-cast explosives.


Asunto(s)
Sustancias Explosivas , Sustancias Explosivas/química , Anisoles/química , Compuestos de Anilina
7.
Ultrason Sonochem ; 90: 106190, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36215890

RESUMEN

Astragalus membranaceus is a medicinal and edible species in China, with a variety of biological activities. This study evaluated the reuse potential of A. membranaceus waste as a source of food antioxidants. Antioxidant and antifungal activities of flavonoids, polysaccharides, and saponins from A. membranaceus stems and leaves were evaluated. Results showed that inhibition rate of flavonoids on six tested fungi reaches 100 % at a concentration of 5 mg/mL, and the antioxidant test demonstrated satisfactory antioxidant activity. On this basis, an extremely economical ultrasonic-assisted extraction of flavonoids from A. membranaceus stems and leaves was developed and optimized via response surface methodology (RSM). Optimized conditions included an extraction time of 35 min, ethanol concentration of 75 %, liquid-solid ratio of 40 mL/g, and extraction temperature of 58 °C, in which the extraction yield of flavonoids was 22.0270 ± 2.5739 mg/g. The total flavonoids were separated and purified using activity-guided isolation technology, and frac. ccd with strong antioxidant activity were analyzed via HPLC-MS/MS. Results showed that main components are isoquercitrin and astragalin. This study can provide a potential innovative application for the development of natural food antioxidants from A. membranaceus waste.


Asunto(s)
Antioxidantes , Flavonoides , Antioxidantes/farmacología , Flavonoides/análisis , Astragalus propinquus , Espectrometría de Masas en Tándem , Extractos Vegetales/farmacología , Hojas de la Planta/química
8.
Front Plant Sci ; 13: 967187, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36035730

RESUMEN

Subtropical tree species may experience severe drought stress due to variable rainfall under future climates. However, the capacity to restore hydraulic function post-drought might differ among co-occurring species with contrasting leaf habits (e.g., evergreen and deciduous) and have implications for future forest composition. Moreover, the links between hydraulic recovery and physiological and morphological traits related to water-carbon availability are still not well understood. Here, potted seedlings of six tree species (four evergreen and two deciduous) were grown outdoors under a rainout shelter. They grew under favorable water conditions until they were experimentally subjected to a soil water deficit leading to losses of ca. 50% of hydraulic conductivity, and then soils were re-watered to field capacity. Traits related to carbon and water relations were measured. There were differences in drought responses and recovery between species, but not as a function of evergreen or deciduous groups. Sapindus mukorossi exhibited the most rapid drought response, which was associated with a suite of physiological and morphological traits (larger plant size, the lowest hydraulic capacitance (C branch), higher minimum conductance (g min) and lower HV (Huber value)). Upon re-watering, xylem water potential exhibited fast recovery in 1-3 days among species, while photosynthesis at saturating light (A sat) and stomatal conductance (g s) recovery lagged behind water potential recovery depending on species, with g s recovery being more delayed than A sat in most species. Furthermore, none of the six species exhibited significant hydraulic recovery during the 7 days re-watering period, indicating that xylem refilling was apparently limited; in addition, NSC availability had a minimal role in facilitating hydraulic recovery during this short-term period. Collectively, if water supply is limited by insignificant hydraulic recovery post-drought, the observed carbon assimilation recovery of seedlings may not be sustained over the longer term, potentially altering seedling regeneration and shifting forest species composition in subtropical China under climate change.

9.
Front Plant Sci ; 13: 884957, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35755689

RESUMEN

Scutellaria baicalensis Georgi. (Chinese skullcap or Huang-qin) is an extremely crucial medicinal plant in the Labiate family, and the color of its flowers naturally appears purple. However, during the long-term cultivation of S. baicalensis, very few plants of S. baicalensis also present white and purple-red flower colors under the same ecological conditions. However, the complex metabolic and transcriptional networks underlying color formation in white, purple-red, and purple flowers of S. baicalensis remain largely unclarified. To gain an insight into this issue, we conducted transcriptome and metabolomic profiling to elucidate the anthocyanin synthesis metabolic pathway in the flowers of S. baicalensis, and to identify the differentially expressed candidate genes potentially involved in the biosynthesis of anthocyanins. The results showed that 15 anthocyanins were identified, among which cyanidin 3-rutinoside and delphin chloride were the primary anthocyanins, and accumulation was significantly related to the flower color changes of S. baicalensis. Furthermore, the down-regulation of SbDFR (Sb02g31040) reduced the anthocyanin levels in the flowers of S. baicalensis. The differential expression of the Sb3GT (Sb07g04780 and Sb01g72290) gene in purple and purple-red flowers affected anthocyanin accumulation, suggesting that anthocyanin levels were closely associated with the expression of SbDFR and Sb3GT, which play important roles in regulating the anthocyanin biosynthesis process of S. baicalensis flowers. Transcriptomic analysis revealed that transcription factors WRKY, bHLH, and NAC were also highly correlated with anthocyanin accumulation, especially for NAC35, which positively regulated SbDFR (Sb02g31040) gene expression and modulated anthocyanin biosynthesis in flower color variation of S. baicalensis. Overall, this study presents the first experimental evidence for the metabolomic and transcriptomic profiles of S. baicalensis in response to flower coloration, which provides a foundation for dynamic metabolic engineering and plant breeding, and to understand floral evolution in S. baicalensis plants.

10.
Plant Cell Environ ; 45(4): 1187-1203, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34985807

RESUMEN

Drought-induced tree mortality may increase with ongoing climate change. Unraveling the links between stem hydraulics and mortality thresholds, and the effects of intraspecific variation, remain important unresolved issues. We conducted a water manipulation experiment in a rain-out shelter, using four provenances of Schima superba originating from a gradient of annual precipitation (1124-1796 mm) and temperature (16.4-22.4°C). Seedlings were droughted to three levels of percentage loss of hydraulic conductivity (i.e., P50 , P88  and P99) and subsequently rewatered to field capacity for 30 days; traits related to water and carbon relations were measured. The lethal water potential associated with incipient mortality was between P50 and P88 . Seedlings exhibited similar drought responses in xylem water potential, hydraulic conductivity and gas exchange. Upon rehydration, patterns of gas exchange differed among provenances but were not related to the climate at the origin. The four provenances exhibited a similar degree of stem hydraulic recovery, which was correlated with the magnitude of antecedent drought and stem soluble sugar at the end of the drought. Results suggest that there were intraspecific differences in the capacity of S. superba seedlings for carbon assimilation during recovery, indicating a decoupling between gas exchange recovery and stem hydraulics across provenances.


Asunto(s)
Sequías , Árboles , Carbono , Hojas de la Planta/fisiología , Plantones , Árboles/fisiología , Agua/fisiología , Xilema/fisiología
11.
Int J Biol Macromol ; 187: 350-360, 2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34303738

RESUMEN

The periplasmic binding protein (PBP) BtuF plays a key role in transporting vitamin B12 from periplasm to the ATP-binding cassette (ABC) transporter BtuCD. Conformational changes of BtuF during transport can hardly be captured by traditional biophysical methods and the exact mechanism regarding B12 and BtuF recognition is still under debate. In the present work, conformational changes of BtuF upon B12 binding and release were investigated using hybrid approaches including collision-induced unfolding (CIU), hydrogen deuterium exchange mass spectrometry (HDX-MS) and molecular dynamics (MD) simulation. It was found that B12 binding increased the stability of BtuF. In addition, fast exchange regions of BtuF were localized. Most importantly, midpoint of hinge helix in BtuF was found highly flexible, and binding of B12 proceed in a manner similar to the Venus flytrap mechanism. Our study therefore delineates a clear view of BtuF delivering B12, and demonstrated a hybrid approach encompassing MS and computer based methods that holds great potential to the probing of conformational dynamics of proteins in action.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Espectrometría de Masas de Intercambio de Hidrógeno-Deuterio , Simulación de Dinámica Molecular , Proteínas de Unión Periplasmáticas/metabolismo , Vitamina B 12/metabolismo , Sitios de Unión , Transporte Biológico , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Unión Periplasmáticas/química , Proteínas de Unión Periplasmáticas/genética , Unión Proteica , Conformación Proteica , Estabilidad Proteica , Desplegamiento Proteico , Relación Estructura-Actividad , Vitamina B 12/química
12.
Sheng Wu Gong Cheng Xue Bao ; 37(4): 1312-1323, 2021 Apr 25.
Artículo en Chino | MEDLINE | ID: mdl-33973444

RESUMEN

Dihydroflavanol-4-reductase (Dfr) is a key enzyme that regulates the synthesis of anthocyanin and proanthocyanidin in the flavonoid biosynthesis pathway. To investigate the difference of dfr gene in Scutellaria baicalensis Georgi with different colors in the same ecological environment, three complete full-length sequences of dfr gene were cloned from the cDNA of S. baicalensis with white, purple-red and purple colors using homologous cloning and RACE techniques. The three genes were named Sbdfr1, Sbdfr2 and Sbdfr3, respectively, and their corresponding structures were analyzed. The results showed that all three Dfr proteins have highly conserved NADPH binding sites and substrate-specific binding sites. Phylogenetic analysis showed that they are closely related to that of the known S. viscidula (ACV49882.1). Analysis of key structural domains and 3D models revealed differences in the catalytically active regions on the surface of all three Dfr proteins, and their unique structural characteristics may provide favorable conditions for studying the substrate specificity of different Dfr proteins. qRT-PCR analysis shows that dfr was expressed at different level in all tissues except the roots of S. baicalensis in full-bloom. During floral development, the expression level of dfr in white and purple-flowered Scutellaria showed an overall upward trend. In purple-red-flowered Scutellaria, the expression first slowly increased, followed by a decrease, and then rapidly increased to the maximum. This research provides a theoretical basis for further exploring the mechanism and function of Dfr substrate selectivity, and are of great scientific value for elucidating the molecular mechanism of floral color variation in S. baicalensis.


Asunto(s)
Antocianinas , Scutellaria baicalensis , Clonación Molecular , Color , Filogenia , Scutellaria baicalensis/genética
13.
Plant Pathol J ; 37(2): 162-172, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33866758

RESUMEN

Soybean mosaic virus (SMV) is the predominant viral pathogen that affects the yield and quality of soybean. The natural host range for SMV is very narrow, and generally limited to Leguminosae. However, we found that SMV can naturally infect Pinellia ternata and Atractylodes macrocephala. In order to clarify the molecular mechanisms underlying the crossfamily infection of SMV, we used double-stranded RNA extraction, rapid amplification of cDNA ends polymerase chain reaction and Gibson assembly techniques to carry out SMV full-length genome amplification from susceptible soybeans and constructed an infectious cDNA clone for SMV. The genome of the SMV Shanxi isolate (SMV-SX) consists of 9,587 nt and encodes a polyprotein consisting of 3,067 aa. SMV-SX and SMV-XFQ008 had the highest nucleotide and amino acid sequence identities of 97.03% and 98.50%, respectively. A phylogenetic tree indicated that SMV-SX and SMV-XFQ018 were clustered together, sharing the closest relationship. We then constructed a pSMV-SX infectious cDNA clone by Gibson assembly technology and used this clone to inoculate soybean and Ailanthus altissima; the symptoms of these hosts were similar to those caused by the virus isolated from natural infected plant tissue. This method of construction not only makes up for the time-consuming and laborious defect of traditional methods used to construct infectious cDNA clones, but also avoids the toxicity of the Potyvirus special sequence to Escherichia coli, thus providing a useful cloning strategy for the construction of infectious cDNA clones for other viruses and laying down a foundation for the further investigation of SMV cross-family infection mechanisms.

14.
RSC Adv ; 11(30): 18458-18467, 2021 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35480934

RESUMEN

In this study, to evaluate the effects of two methods for activation of nitric acid, air thermal oxidation and Ce doping were applied to a Cu-Ni/activated carbon (AC) low-temperature CO-SCR denitration catalyst. The Cu-Ni-Ce/AC0,1 catalyst was prepared using the ultrasonic equal volume impregnation method. The physical and chemical structures of Cu-Ni-Ce/AC0,1 were studied using scanning electron microscopy, Brunauer-Emmett-Teller analysis, Fourier-transform infrared spectroscopy, X-ray diffractometry, X-ray photoelectron spectroscopy, CO-temperature programmed desorption (TPD) and NO-TPD characterisation techniques. It was found that the denitration efficiency of 6Cu-4Ni-5Ce/AC1 can reach 99.8% at a denitration temperature of 150 °C, a GHSV of 30 000 h-1 and 5% O2. Although the specific surface area of the AC activated by nitric acid was slightly lower than that activated by air thermal oxidation, the pore structure of the AC activated by nitric acid was more developed, and the number of acidic oxygen-containing functional groups was significantly increased. Ce metal ions were inserted into the graphite microcrystalline structure of AC, splitting it into smaller graphene fragments, whereby the dispersibility of Cu and Ni was improved. In addition, many reaction units were formed on the catalyst surface, which could adsorb more CO and NO reaction gases. With the increase in Ce doping, the relative proportions of Cu2+/Cu n+, Ni3+/Ni n+ and surface adsorbed oxygen (Oα) in the Cu-Ni-Ce/AC0,1 catalyst increased. In addition, after the introduction of Ce into Cu-Ni/AC, the amount of weak and medium acids significantly increased. This may be due to the Ce species or its influence on the Cu/Ni species. Further, the active sites of the acid were more exposed. According to the results of the study, a composite metal oxide CO-SCR denitration mechanism is proposed. Through the oxidation-reduction reaction between the metals, the reaction gas of CO and NO is adsorbed and the incoming O2 is converted into (Oα), which promotes the conversion of NO into NO2. The CO-SCR reaction is accelerated, and the rate of low-temperature denitration was increased. Overall, the results of this study will provide theoretical support for the research and development of low-temperature denitration catalysts for sintering flue gas in iron and steel enterprises.

15.
Plant Pathol J ; 36(5): 468-475, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33082731

RESUMEN

Malva vein clearing virus (MVCV) is a member of the Potyvirus species, and has a negative impact on the aesthetic development of Alcea rosea. It was first reported in Germany in 1957, but its complete genome sequence data are still scarce. In the present work, A. rosea leaves with vein-clearing and mosaic symptoms were sampled and analyzed with small RNA deep sequencing. By denovo assembly the raw sequences of virus-derived small interfering RNAs (vsiRs) and whole genome amplification of malva vein cleaning virus SX strain (MVCV-SX) by specific primers targeting identified contig gaps, the full-length genome sequences (9,645 nucleotides) of MVCV-SX were characterized, constituting of an open reading frame that is long enough to encode 3,096 amino acids. Phylogenetic analysis showed that MVCV-SX was clustered with euphorbia ringspot virus and yam mosaic virus. Further analyses of the vsiR profiles revealed that the most abundant MVCV-vsiRs were between 21 and 22 nucleotides in length and a strong bias was found for "A" and "U" at the 5'-terminal residue. The results of polarity assessment indicated that the amount of sense strand was almost equal to that of the antisense strand in MVCV-vsiRs, and the main hot-spot region in MVCV-SX genome was found at cylindrical inclusion. In conclusion, our findings could provide new insights into the RNA silencing-mediated host defence mechanism in A. rosea infected with MVCV-SX, and offer a basis for the prevention and treatment of this virus disease.

16.
Sheng Wu Gong Cheng Xue Bao ; 36(5): 949-958, 2020 May 25.
Artículo en Chino | MEDLINE | ID: mdl-32567278

RESUMEN

Soybean mosaic virus (SMV), one of the major viral diseases of Pinellia ternata (Thunb.) Breit., has had a serious impact on its yield and quality. The construction of viral infectious clones is a powerful tool for reverse genetics research on viral gene function and interaction between virus and host. To clarify the molecular mechanism of SMV infection in Pinellia ternata, it is particularly important to construct the SMV full-length cDNA infectious clone. Therefore, the infectious clone of Soybean mosaic virus Shanxi Pinellia ternata isolate (SMV-SXBX) was constructed in this study by Gibson in vitro recombination system, and the healthy Pinellia ternata leaves were inoculated by Agrobacterium infiltration, further through mechanical passage and RT-PCR, confirming that the 3' end of the SMV-SXBX infectious clone had a stable infectivity when it contained 56-nt of poly(A) tail. This method is not only convenient and efficient, but also avoids the instability of SMV infectious clones in Escherichia coli. The construction of SMV full-length infectious cDNA clones laid the foundation for further study on the molecular mechanism of SMV replication and pathogenesis.


Asunto(s)
Pinellia , Potyvirus , ADN Complementario , Pinellia/virología , Enfermedades de las Plantas/virología , Potyvirus/aislamiento & purificación , Potyvirus/metabolismo
17.
ACS Omega ; 5(12): 6556-6565, 2020 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-32258891

RESUMEN

Biobutanol is a promising alternative fuel for spark-ignition engines. Exhaust gas recirculation (EGR) and air dilution were evaluated on a TGDI engine fueled with butanol-gasoline (B20) in view of engine operation, efficiency, gaseous emissions, and PM emissions. For the B20 engine, EGR affected combustion more strongly than excess air dilution; the brake thermal efficiency (BTE) under excess air dilution was much higher than that with EGR. The oxygen concentration in the cylinder was also markedly reduced with EGR relative to air dilution, as the partial fresh charge was substituted with nonreactive gas. A reduced oxygen concentration contributed to differences in combustion between excess air dilution and EGR. Higher BTE was observed during combined EGR and excess air dilution operation, though it was slightly lower than that under excess air dilution alone. NO x was also markedly reduced by the combination of EGR and excess air dilution, but was slightly higher than that with EGR alone. Under combined dilution conditions, the particle number (PN) emissions from the B20 engine were reduced significantly, particle sizes decreased, and the nucleate PN significantly decreased.

18.
ACS Omega ; 5(7): 3250-3257, 2020 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-32118140

RESUMEN

Butanol is attracting more attention as an alternative fuel. The performance and emissions of butanol/ethanol-gasoline (E10) was investigated in a spark ignition engine. Exhaust gas recirculation (EGR) was employed to improve the engine performance and emissions in this reported test. The experimental results showed that high brake thermal efficiency (BTE) was observed with a high proportion of blended fuels in comparison to E10. During EGR operation, the introduction of butanol changed the combustion behavior, including prolonged ignition delay, shortened rapid burning duration, a reduced knock number, and knock intensity. The brake-specific fuel consumption (BSFC) increased with butanol addition, and when EGR was introduced, it decreased similarly to E10. The butanol-E10 blends exhibited lower exhaust gas temperature in comparison to E10 at various EGR rates. Hydrocarbon emissions from the blends increased slightly with the increased EGR rate, whereas CO emissions decreased. EGR exhibited high inhibition of NO x emissions for both blended fuels and E10, which were reduced by more than 80%. The NO x emissions from the blended fuels were 20-30% less than that of E10 with or without EGR conditions. Finally, EGR contributed to a reduction in BSFC and improvement in BTE for the butanol-E10 engine. The butanol-E10 blends exhibited a similar power performance, slightly reduced combustion stability, and acceptable emissions with respect to the baseline conditions.

19.
Phytopathology ; 110(6): 1189-1198, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32141384

RESUMEN

The harpin protein Hpa1 has various beneficial effects in plants, such as promoting plant growth and inducing pathogen resistance. Our previous study found that Hpa1 could significantly alleviate the mosaic symptoms of tobacco mosaic virus (TMV) in Pinellia ternata, indicating that Hpa1 can effectively stimulate resistance. Here, the potential mechanism of disease resistance and field applicability of Hpa1 against TMV in P. ternata were further investigated. The results showed that 15 µg ml-1 Hpa1 had stronger antiviral activity than the control, and its protective effect was better than its curative effect. Furthermore, Hpa1 could significantly induce an increase in defense-related enzyme activity, including polyphenol oxidase, peroxidase, catalase, and superoxide dismutase, as well as increase the expression of disease resistance-related genes (PR1, PR3, PR5, and PDF1.2). Concurrently, Hpa1 significantly increased the content of some disease resistance-related substances, including hydrogen peroxide, phenolics, and callose, whereas the content of malondialdehyde was reduced. In addition, field application analysis demonstrated that Hpa1 could effectively elicit a defense response against TMV in P. ternata. Our findings propose a mechanism by which Hpa1 can prevent TMV infection in Pinellia by inducing systemic resistance, thereby providing an environmentally friendly approach for the use of Hpa1 in large-scale applications to improve TMV resistance in Pinellia.


Asunto(s)
Pinellia , Virus del Mosaico del Tabaco , Resistencia a la Enfermedad , Humanos , Enfermedades de las Plantas , Nicotiana
20.
Talanta ; 208: 120477, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-31816765

RESUMEN

Research and development of innovative targeted therapies is a great challenge in the fight against cancer. Although many treatment methods are currently available, there is no simple and effective system for promptly conducting anti-cancer drug screening and dose-response evaluation of the cancer patients to the drug. Herein, we developed an easy and compact flow rate independent microfluidic chip that can rapidly construct three concentration gradients of multiple solutes based on Dean flow under a wide range of flow rates. Chemical gradient dynamics were investigated systematically and quantitatively. Three stable, accurate, and controllable drug gradients were generated to evaluate treatments of two tumor cell lines (MCF-7 and HepG2). Results showed the dose- and time-dependent antitumor effects of the drugs, indicating the suitability of the proposed system to evaluate the individual actions and interactions of the anti-cancer drugs (doxorubicin and cisplatin) on one tumor cell line under the same conditions. In addition, cell viability in the microfluidic chip under gradient conditions showed a linear relationship to the viability of the traditional culture experiment. In summary, our microfluidic device can be used to develop insensitive techniques to operational conditions for simultaneously establishing multi-drug concentration gradients, which has the potential to promote the development of specific drug screening tools for targeting multiple vulnerabilities of tumor cells and evaluating the most effective personalized treatment technique.


Asunto(s)
Ensayos de Selección de Medicamentos Antitumorales/métodos , Dispositivos Laboratorio en un Chip , Antineoplásicos/farmacología , Supervivencia Celular/efectos de los fármacos , Cisplatino/farmacología , Doxorrubicina/farmacología , Células Hep G2 , Humanos , Células MCF-7 , Técnicas Analíticas Microfluídicas , Medicina de Precisión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...