Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
JCI Insight ; 8(15)2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37338994

RESUMEN

Antibodies capable of neutralizing SARS-CoV-2 are well studied, but Fc receptor-dependent antibody activities that can also significantly impact the course of infection have not been studied in such depth. Since most SARS-CoV-2 vaccines induce only anti-spike antibodies, here we investigated spike-specific antibody-dependent cellular cytotoxicity (ADCC). Vaccination produced antibodies that weakly induced ADCC; however, antibodies from individuals who were infected prior to vaccination (hybrid immunity) elicited strong anti-spike ADCC. Quantitative and qualitative aspects of humoral immunity contributed to this capability, with infection skewing IgG antibody production toward S2, vaccination skewing toward S1, and hybrid immunity evoking strong responses against both domains. A combination of antibodies targeting both spike domains support strong antibody-dependent NK cell activation, with 3 regions of antibody reactivity outside the receptor-binding domain (RBD) corresponding with potent anti-spike ADCC. Consequently, ADCC induced by hybrid immunity with ancestral antigen was conserved against variants containing neutralization escape mutations in the RBD. Induction of antibodies recognizing a broad range of spike epitopes and eliciting strong and durable ADCC may partially explain why hybrid immunity provides superior protection against infection and disease compared with vaccination alone, and it demonstrates that spike-only subunit vaccines would benefit from strategies that induce combined anti-S1 and anti-S2 antibody responses.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Vacunas contra la COVID-19 , Citotoxicidad Celular Dependiente de Anticuerpos , Inmunidad Humoral , Inmunoglobulina G
2.
J Clin Invest ; 132(21)2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36074574

RESUMEN

The basis of immune evasion, a hallmark of cancer, can differ even when cancers arise from one cell type such as in the human skin keratinocyte carcinomas: basal and squamous cell carcinoma. Here we showed that the basal cell carcinoma tumor-initiating cell surface protein CD200, through ectodomain shedding, was responsible for the near absence of NK cells within the basal cell carcinoma tumor microenvironment. In situ, CD200 underwent ectodomain shedding by metalloproteinases MMP3 and MMP11, which released biologically active soluble CD200 into the basal cell carcinoma microenvironment. CD200 bound its cognate receptor on NK cells to suppress MAPK pathway signaling that in turn blocked indirect (IFN-γ release) and direct cell killing. In addition, reduced ERK phosphorylation relinquished negative regulation of PPARγ-regulated gene transcription and led to membrane accumulation of the Fas/FADD death receptor and its ligand, FasL, which resulted in activation-induced apoptosis. Blocking CD200 inhibition of MAPK or PPARγ signaling restored NK cell survival and tumor cell killing, with relevance to many cancer types. Our results thus uncover a paradigm for CD200 as a potentially novel and targetable NK cell-specific immune checkpoint, which is responsible for NK cell-associated poor outcomes in many cancers.


Asunto(s)
Carcinoma Basocelular , Carcinoma de Células Escamosas , Humanos , Microambiente Tumoral , PPAR gamma , Células Asesinas Naturales , Receptor fas , Apoptosis , Carcinoma de Células Escamosas/genética
4.
J Clin Invest ; 131(4)2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33586678

RESUMEN

Human cytomegalovirus (HCMV) is a ubiquitous pathogen that causes severe disease following congenital infection and in immunocompromised individuals. No vaccines are licensed, and there are limited treatment options. We now show that the addition of anti-HCMV antibodies (Abs) can activate NK cells prior to the production of new virions, through Ab-dependent cellular cytotoxicity (ADCC), overcoming viral immune evasins. Quantitative proteomics defined the most abundant HCMV proteins on the cell surface, and we screened these targets to identify the viral antigens responsible for activating ADCC. Surprisingly, these were not structural glycoproteins; instead, the immune evasins US28, RL11, UL5, UL141, and UL16 each individually primed ADCC. We isolated human monoclonal Abs (mAbs) specific for UL16 or UL141 from a seropositive donor and optimized them for ADCC. Cloned Abs targeting a single antigen (UL141) were sufficient to mediate ADCC against HCMV-infected cells, even at low concentrations. Collectively, these findings validated an unbiased methodological approach to the identification of immunodominant viral antigens, providing a pathway toward an immunotherapeutic strategy against HCMV and potentially other pathogens.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Anticuerpos Antivirales/farmacología , Citotoxicidad Celular Dependiente de Anticuerpos/efectos de los fármacos , Antígenos Virales/inmunología , Infecciones por Citomegalovirus/inmunología , Citomegalovirus/fisiología , Proteínas no Estructurales Virales/inmunología , Activación Viral/efectos de los fármacos , Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/inmunología , Línea Celular Transformada , Infecciones por Citomegalovirus/patología , Humanos , Activación Viral/inmunología
5.
Elife ; 82019 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-31873071

RESUMEN

Human cytomegalovirus (HCMV) extensively modulates host cells, downregulating >900 human proteins during viral replication and degrading ≥133 proteins shortly after infection. The mechanism of degradation of most host proteins remains unresolved, and the functions of many viral proteins are incompletely characterised. We performed a mass spectrometry-based interactome analysis of 169 tagged, stably-expressed canonical strain Merlin HCMV proteins, and two non-canonical HCMV proteins, in infected cells. This identified a network of >3400 virus-host and >150 virus-virus protein interactions, providing insights into functions for multiple viral genes. Domain analysis predicted binding of the viral UL25 protein to SH3 domains of NCK Adaptor Protein-1. Viral interacting proteins were identified for 31/133 degraded host targets. Finally, the uncharacterised, non-canonical ORFL147C protein was found to interact with elements of the mRNA splicing machinery, and a mutational study suggested its importance in viral replication. The interactome data will be important for future studies of herpesvirus infection.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Infecciones por Citomegalovirus/genética , Citomegalovirus/genética , Proteínas Oncogénicas/genética , Proteómica , Citomegalovirus/patogenicidad , Infecciones por Citomegalovirus/virología , Regulación Viral de la Expresión Génica/genética , Interacciones Huésped-Patógeno/genética , Humanos , Empalme del ARN/genética , ARN Mensajero/genética , Proteínas Virales/genética , Replicación Viral/genética
6.
Antivir Chem Chemother ; 20(3): 133-42, 2010 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-20054100

RESUMEN

BACKGROUND: Olomoucine II, the most recent derivative of roscovitine, is an exceptionally potent pharmacological inhibitor of cyclin-dependent kinase activities. Here, we report that olomoucine II is also an effective antiviral agent. METHODS: Antiviral activities of olomoucine II were tested on a range of human viruses in in vitro assays that evaluated viral growth and replication. RESULTS: Olomoucine II inhibited replication of a broad range of wild-type human viruses, including herpes simplex virus, human adenovirus type-4 and human cytomegalovirus. Olomoucine II also inhibited replication of vaccinia virus and herpes simplex virus mutants resistant to conventional acyclovir treatment. This report is the first demonstration of a poxvirus being sensitive to a cyclin-dependent kinase inhibitor. The antiviral effects of olomoucine II could be observed at lower concentrations than with roscovitine, although both were short-term. A remarkable observation was that olomoucine II, when used in combination with the DNA polymerase inhibitor cidofovir, was able to almost completely eliminate the spread of infectious adenovirus type-4 progeny from infected cells. CONCLUSIONS: Our results show that when targeting two complementary antiviral mechanisms, strongly additive effects could be observed.


Asunto(s)
Antivirales/farmacología , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Purinas/farmacología , Virus/enzimología , Humanos , Concentración 50 Inhibidora , Fenómenos Fisiológicos de los Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Virus/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...