Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Immun Inflamm Dis ; 10(6): e612, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35634960

RESUMEN

INTRODUCTION: Surrogate rapid serological assay was urgently demanded for accessibly interpretation of immunity potency and duration of neutralizing antibody against SARS-CoV-2. The longitudinal trajectory of antibody profile with a reliable large-scale assay was crucial to judge the protective immune status, avoid futile therapy and provide insight into the booster vaccination minimizing the risk of COVID-19. METHODS: A total of 195 volunteers were enrolled for a two-doses procedure (0 and 28 days) of inactive vaccination, as well as ten COVID-19 convalescents. The serum was collected at six time point and detected by chemiluminescent immunoassay with SARS-CoV-2 neutralizing antibody (Nab), SARS-CoV-2 RBD immunoglobulin G (IgG) antibody (RBD IgG) and RBD total antibody. The diagnostic results and the correlation of antibody level were evaluated among three serological (Nab, RBD IgG, and RBD total antibody) assay, as well as with an authorized cPass kit (Nab). Referred to the assay-specific threshold, the seroconversion rate and dynamic titer of antibody were exhibited from 0 to 56 days since vaccination. RESULTS: There was no difference observed with diagnostic results between neutralizing and RBD IgG antibody (p > 0.05). Both diagnostic results of neutralizing and RBD IgG antibody testing differentiated from RBD total antibody assay (p < 0.05). The coefficient of correlation (R) was above 0.90 among the levels of those three antibodies, more than 0.60 in comparison with neutralizing antibody by cPass enzyme-linked immunoassay. The "S" varying pattern for various antibodies level was observed with time extension after vaccination. The seroconversion rate was below 11.1% in 2 weeks after the priming dose, while the value climbed to 81% in 1 week after the boosting dose. The seroconversion rate was maintained around 91%. The inactive vaccine elicited 81-fold higher antibody levels after finished the vaccination schedule than that at the basic point. Besides, the level of neutralizing antibody induced by vaccine was found with a 0.2-fold ratio by comparison with that in COVID-19 convalescents. CONCLUSION: The humoral immune response products including SARS-CoV-2 neutralizing, RBD IgG antibody and total antibody and the varying pattern of the antibody profile could be rapidly detected by CILA method. Meanwhile, the continuing and dynamic determination was attributed to evaluate the protection effect of humoral immunity against the SARS-CoV-2 infection.


Asunto(s)
COVID-19 , Vacunas Virales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Humanos , Inmunoensayo , Inmunoglobulina G , SARS-CoV-2 , Vacunas Virales/farmacología
2.
J Clin Lab Anal ; 36(4): e24325, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35235705

RESUMEN

BACKGROUND: Currently, mass vaccine inoculation against coronavirus disease-2019 (COVID-19) has been being implemented globally. Rapid and the large-scale detection of serum neutralizing antibodies (NAbs) laid a foundation for assessing the immune response against SARS-CoV-2 infection and vaccine. Additional assessments include the duration of antibodies and the optimal time for a heightened immune response. METHODS: The performance of five surrogate NAbs-three chemiluminescent immunoassay (CLIA) and two enzyme-linked immunosorbent assays (ELISAs)-and specific IgM and IgG assays were compared using COVID-19-vaccinated serum (n = 164). Conventional virus neutralization test (cVNT) was used as a criterion and the diagnostic agreement and correlation of the five assays were evaluated. We studied the antibody responses after the two-dose vaccine in volunteers up to 6 months. RESULTS: The sensitivity and specificity of five surrogate NAb assays ranged from 84% to 100%. Our cVNT results indicated great consistency with the surrogate assays. At 28 days after primary vaccination, the seropositivities of the NAbs, IgG, and IgM were 6%, 4%, and 13%, respectively. After the booster dose, seropositivities reached 14%, 65%, and 97%, respectively. Six months after receipt of the second dose, the NAb positive rate was eventually maintained at 66%. In all COVID-19 convalescents, patients were detected with 100% NAb sat three months after discharge. CONCLUSION: COVID-19 vaccine induced a humoral immune response lasting at least six months. Rapid serological detection was used as a proxy for identifying changes in immunity levels and as a guide to whether an individual may require a booster vaccination.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Humanos , Inmunoglobulina G , Inmunoglobulina M , SARS-CoV-2 , Pruebas Serológicas , Vacunación
3.
BMC Infect Dis ; 22(1): 157, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35168557

RESUMEN

OBJECTIVE: Reliable high-throughput serological assays for SARS-CoV-2 antibodies present an important role in the strength and duration of immunity after vaccination. The study investigated the analytical and clinical performances of neutralizing antibodies (NTAb) assay by chemiluminescent (CLIA), and SARS-CoV-2 neutralizing antibody after vaccination in real world. METHODS: The analytical performances of CLIA for SARS-CoV-2 NTAb were evaluated, followed by the sensitivity and specificity identified with a PRNT test from 50 volunteers. Then, a cohort of vaccine recipients (n = 37) were tracked with SARS-CoV-2 NTAb assay at prior to vaccination, one, three and six months post two doses. In real world, a total of 737 cases were recruited from physical examination center in Shenzhen Luohu People's Hospital (from Jun to August 2021) to analyze vaccination status. RESULTS: Serological assays on the CLIA were found with excellent characteristics including imprecision, repeatability and linearity. Besides, it was robust to icterus, lipemia and hemolysis. The good sensitivity and specificity were obtained at 98% and 100%, respectively. NTAb results showed a high correlation with PRNT50 titers (r 0.61). Until July 2021, the BBIBP-CorV (76.3%) and Sinovac CoronaVac (20.5%) were the predominant vaccines injection in Shenzhen, China. Adolescent less than 18 years was the main unvaccinated group (52.1%). The seropositive rate of inactive SRAR-CoV-2 vaccines exceeded 97% after inoculation. The NTAb generated by Sinovac CoronaVac with the schedule of 0-56 days was found significantly lower than that by BBIBP-CorV (P < 0.001). The follow-up of NTAb changes in a cohort and the dynamic variation of NTAb in real world disclosed steep downward by almost three times for NTAb level occurred at three months post twice vaccinations. The seropositive ratio was at least 50% over 6 months. CONCLUSIONS: SARS-CoV-2 neutralizing antibodies assay show excellent analytical and clinical performances, and a high correlation with neutralizing activity. Anti-epidemic measures and the urgent trial of SARS-CoV-2 vaccine was calling for adolescents.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Adolescente , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Humanos , Luminiscencia , SARS-CoV-2 , Vacunación
4.
J Clin Lab Anal ; 35(1): e23681, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33340166

RESUMEN

BACKGROUND: Seldom performance evaluation and diagnosis comparison studies were reported for different chemiluminescent immunoassay (CLIA) kits approved under an emergency approval program for SARS-CoV-2 infection. METHODS: A total of 100 and 105 serum separately from non-infected populations and COVID-19 patients were detected with SARS-CoV-2 IgM and IgG kits. The characteristics including precision, functional sensitivity, linearity, and accuracy were evaluated for Axceed, iFlash, and Maglumi CLIA kits. RESULTS: Maglumi and iFlash had the best analytical sensitivity for IgM and IgG, respectively. Axceed kits had a linearity response in the detected concentration. The clinical sensitivity of Axceed, iFlash, and Maglumi was 68.0%, 64.9%, and 63.9% with a specificity of 99.0%, 96.0%, and 100% for IgM, 85.6%, 97.9%, and 94.8% with a specificity of 97.0% for IgG. ROC analysis indicated all kits had a diagnostic power greater than 0.9. Notably, either IgM or IgG kits obtained a poor agreement (Kappa value from 0.397 to 0.713) with others. Among 38 recovered patients, 94.7% had an effective immune response, and both seropositive IgM and IgG accounted for the biggest proportion (medium, 42 days onset), then followed by the single seropositive IgG (medium, 50 days onset) in Ab profile. CONCLUSION: The performance of CLIA kits satisfied the diagnosis of SARS-CoV-2 infection. Both positive of IgG and IgM contributes to improve the specificity, and a positive one will enhance the sensitivity.


Asunto(s)
Prueba de COVID-19/métodos , COVID-19/etiología , Inmunoensayo/métodos , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , Adulto , Anciano , Anticuerpos Antivirales/sangre , Automatización de Laboratorios , COVID-19/diagnóstico , Femenino , Humanos , Luminiscencia , Embarazo , Complicaciones Infecciosas del Embarazo/etiología , Complicaciones Infecciosas del Embarazo/terapia , Reproducibilidad de los Resultados , SARS-CoV-2/inmunología , Factores de Tiempo
5.
Nanoscale ; 8(6): 3647-59, 2016 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-26809318

RESUMEN

In this study, a simple configuration, based on high-index dielectric nanoparticles (NPs) and plasmonic nanostructures, is employed for the nanofocusing of submicron-short-range surface plasmon polaritons (SPPs). The excited SPPs are locally bound and focused at the interface between the dielectric NPs and the underlying metallic nanostructures, thereby greatly enhancing the local electromagnetic field. Taking advantage of the surface properties of the dielectric NPs, this system performs various functions. For example, the nanofocusing of submicron-short-range SPPs is used to enhance the Raman signals of gas molecules adsorbed on the dielectric NPs. In addition, the presence of the local strong electromagnetic field accelerates the rates of interfacial reactions on the surfaces of the dielectric NPs. Therefore, the proposed nanofocusing configuration can both promote and probe interfacial reactions simultaneously. Herein, the promotion and probing of the desorption of EtOH vapor are described, as well as the photodegradation of methylene blue. Moreover, the nanofocusing of SPPs is demonstrated on an aluminum surface in both the visible and UV regimes, a process that has not been achieved using conventional tapered waveguide nanofocusing structures. Therefore, the nanofocusing of submicron-short-range SPPs by dielectric NPs on plasmonic nanostructures is not limited to low-loss noble metals. Accordingly, this system has potential for use in light management and on-chip green devices and sensors.

6.
ACS Nano ; 9(5): 5093-103, 2015 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-25927392

RESUMEN

In this study, we combine graphene with gold oxide (AuOx), a transparent and high-work-function electrode material, to achieve a high-efficient, low-bias, large-area, flexible, transparent, broadband, and bifacial-operable photodetector. The photodetector operates through hot electrons being generated in the graphene and charge separation occurring at the AuOx-graphene heterojunction. The large-area graphene covering the AuOx electrode efficiently prevented reduction of its surface; it also acted as a square-centimeter-scale active area for light harvesting and photodetection. Our graphene/AuOx photodetector displays high responsivity under low-intensity light illumination, demonstrating picowatt sensitivity in the ultraviolet regime and nanowatt sensitivity in the infrared regime for optical telecommunication. In addition, this photodetector not only exhibited broadband (from UV to IR) high responsivity-3300 A W(-1) at 310 nm (UV), 58 A W(-1) at 500 nm (visible), and 9 A W(-1) at 1550 nm (IR)-but also required only a low applied bias (0.1 V). The hot-carrier-assisted photoresponse was excellent, especially in the short-wavelength regime. In addition, the graphene/AuOx photodetector exhibited great flexibility and stability. Moreover, such vertical heterojunction-based graphene/AuOx photodetectors should be compatible with other transparent optoelectronic devices, suggesting applications in flexible and wearable optoelectronic technologies.

7.
Anal Chem ; 86(15): 7192-9, 2014 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-25019532

RESUMEN

We demonstrate an inspection technique, based on only one ellipsometric parameter, Ψ, of spectroscopic ellipsometry (SE), for the rapid, simultaneous identification of both the structural quality and thicknesses of large-area graphene films. The measured Ψ spectra are strongly affected by changes in the out-of-plane absorption coefficients (αTM); they are also correlated to the ratio of the intensities of the D and G bands in Raman spectra of graphene films. In addition, the electronic transition state of graphene within the UV regime assists the characterization of the structural quality. We also demonstrated that the intensities and shifts of the signals in Ψ spectra allow clear identification of the structural qualities and thicknesses, respectively, of graphene films. Moreover, this Ψ-based method can be further applied to graphene films coated on various substrates. In addition, mapping of the values of Ψ is a very convenient and useful means of rapidly characterizing both the structural quality and thickness of 2D materials at local areas. Therefore, this Ψ-based characterization method has great potential for application in the mass production of devices based on large-area graphene.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA