Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 623
Filtrar
1.
Heliyon ; 10(10): e30461, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38770310

RESUMEN

With the increase in global economic integration, high-quality economic development (HQED) has become a common goal of all countries. Based on these five development concepts, this paper uses the Gini coefficient, trend surface analysis, geographically weighted regression (GWR), the entropy weighting method, and standard deviation ellipse analysis to study the spatio-temporal pattern and driving mechanism of HQED in the Guangdong-Hong Kong-Macao Greater Bay Area (GBA). This paper examines the spatial and temporal patterns and driving mechanisms of HQED in the Guangdong-Hong Kong-Macao Greater Bay Area (GBA) based on five development concepts. The study revealed that (1) HQED is on the rise overall, but at the same time, it highlights the uneven development of multiple dimensions, especially in terms of significant differences in innovation, openness, and sharing. (2) HQED shows a clear center-periphery structure, with Guangzhou, Shenzhen, and Hong Kong as the core high-value areas; the growth rate of HQED capacity in the internal areas is significantly greater than that in the external areas, and HQED is prominent in the cities around Guangzhou, Shenzhen, and Hong Kong. (3) Factors such as agglomeration level, human capital, foreign investment, infrastructure development, financial and environmental protection expenditures, and financial inputs, and scientific, and technological inputs have a significant positive effect on HQED, and their interactions are further strengthened. This study reveals the importance of the realization of HQED in the GBA and the promotion of the overall development of the region.

2.
BMC Cancer ; 24(1): 613, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773461

RESUMEN

BACKGROUND: The intricate balance between the advantages and risks of low-dose computed tomography (LDCT) impedes the utilization of lung cancer screening (LCS). Guiding shared decision-making (SDM) for well-informed choices regarding LCS is pivotal. There has been a notable increase in research related to SDM. However, these studies possess limitations. For example, they may ignore the identification of decision support and needs from the perspective of health care providers and high-risk groups. Additionally, these studies have not adequately addressed the complete SDM process, including pre-decisional needs, the decision-making process, and post-decision experiences. Furthermore, the East-West divide of SDM has been largely ignored. This study aimed to explore the decisional needs and support for shared decision-making for LCS among health care providers and high-risk groups in China. METHODS: Informed by the Ottawa Decision-Support Framework, we conducted qualitative, face-to-face in-depth interviews to explore shared decision-making among 30 lung cancer high-risk individuals and 9 health care providers. Content analysis was used for data analysis. RESULTS: We identified 4 decisional needs that impair shared decision-making: (1) LCS knowledge deficit; (2) inadequate supportive resources; (3) shared decision-making conceptual bias; and (4) delicate doctor-patient bonds. We identified 3 decision supports: (1) providing information throughout the LCS process; (2) providing shared decision-making decision coaching; and (3) providing decision tools. CONCLUSIONS: This study offers valuable insights into the decisional needs and support required to undergo LCS among high-risk individuals and perspectives from health care providers. Future studies should aim to design interventions that enhance the quality of shared decision-making by offering LCS information, decision tools for LCS, and decision coaching for shared decision-making (e.g., through community nurses). Simultaneously, it is crucial to assess individuals' needs for effective deliberation to prevent conflicts and regrets after arriving at a decision.


Asunto(s)
Toma de Decisiones Conjunta , Detección Precoz del Cáncer , Personal de Salud , Neoplasias Pulmonares , Investigación Cualitativa , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/diagnóstico por imagen , Masculino , Femenino , China , Persona de Mediana Edad , Detección Precoz del Cáncer/psicología , Detección Precoz del Cáncer/métodos , Personal de Salud/psicología , Anciano , Tomografía Computarizada por Rayos X/métodos , Adulto , Participación del Paciente
3.
PLoS One ; 19(5): e0298410, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38758951

RESUMEN

In the context of the digital information era, the impact of "The Internet Plus," "Big Data," and other technologies on urban social development has been far beyond any preceding era, under the influence of information technology, urban agglomeration space exhibits a new layout. Based on the search engine data of eleven cities in the Guangdong-Hong Kong-Macao Greater Bay Area from 2012 to 2021, this research constructs the inter-city information network strength linkage matrix to examine the evolution characteristics of city network structure and its driving causes. The results reveal that (1) the overall information linkage strength exhibits a pattern of steadily growing the radiating effect from the leading cities of Guangdong, Shenzhen, and Hong Kong to the surrounding cities, and a closer and more balanced information linkage network is gradually built. (2) Guangzhou-Shenzhen-Hong Kong-Guangdong-Hong Kong-Macao Greater Bay Area information linkage absolute control advantage, four cities Foshan, Dongguan, Zhuhai, Macao regional hub position steadily highlighted. The entire information connection network of the urban agglomerations tends to be flat and polycentric at the same time. (3) The regional core-edge hierarchy is well established, with the four cities of Guangzhou, Dongguan, Shenzhen, and Hong Kong creating a northwest-southeast orientation. The core metropolis regions of Guangdong, Hong Kong, and Macao in the Greater Bay Area increasingly exert a radiation spreading effect to the northeast and southwest. (4) The urban economy, transportation distance, and information infrastructure have substantial effects on the information connection intensity network of urban clusters.


Asunto(s)
Ciudades , Hong Kong , China , Humanos , Macao , Bahías
4.
Angew Chem Int Ed Engl ; : e202404289, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38712497

RESUMEN

Interfacial engineering of perovskite films has been the main strategies in improving the efficiency and stability of perovskite solar cells (PSCs). In this study, three new donor-acceptor (D-A)-type interfacial dipole (DAID) molecules with hole-transporting and different anchoring units are designed and employed in PSCs. The formation of interface dipoles by the DAID molecules on the perovskite film can efficiently modulate the energy level alignment, improve charge extraction, and reduce non-radiative recombination. Among the three DAID molecules, TPA-BAM with amide group exhibits the best chemical and optoelectrical properties, achieving a champion PCE of 25.29% with the enhanced open-circuit voltage of 1.174 V and fill factor of 84.34%, due to the reduced defect density and improved interfacial hole extraction. Meanwhile, the operational stability of the unencapsulated device has been significantly improved. Our study provides a prospect for rationalized screening of interfacial dipole materials for efficient and stable PSCs.

5.
Artículo en Inglés | MEDLINE | ID: mdl-38629191

RESUMEN

Anaprazole, a newly developed oral proton pump inhibitor, was evaluated for safety, tolerability, and pharmacokinetics in healthy Chinese subjects. This study involved administering either anaprazole sodium enteric-coated tablet or placebo, followed by monitoring the incidence and severity of any adverse events (AEs). The pharmacokinetic parameters of anaprazole, its isomer, and main metabolisms were determined. The results showed that both single-dose (2.5-120 mg) and multiple-dose (20 mg once daily, 40 mg once daily, or 20 mg twice daily) oral administration of anaprazole sodium enteric-coated tablet were safe and well tolerated. Following single-dose administration, the median time to reach maximum plasma concentration of anaprazole was between 3.50 and 5.25 hours, with mean elimination half-life of 1.22-3.79 hours. The absorption and elimination of anaprazole in the human body appeared to basically follow linear kinetics. After repeated dosing, steady-state concentrations of anaprazole, its isomer, and primary metabolites were achieved, with a median time to reach maximum plasma concentration of 3-3.75 hours and a mean elimination half-life of 1.61-2.27 hours for anaprazole. There was no significant drug accumulation after multiple-dose oral administration. In conclusion, anaprazole sodium enteric-coated tablets were found to be safe and well tolerated in healthy Chinese individuals. Anaprazole is absorbed and metabolized consistently in the human body without any accumulation.

6.
Biosensors (Basel) ; 14(4)2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38667171

RESUMEN

Transition metal doping is an ideal strategy to construct multifunctional and efficient nanozymes for biosensing. In this work, a metal-doped CoMnOx nanozyme was designed and synthesized by hydrothermal reaction and high-temperature calcination. Based on its oxidase activity, an "on-off-on" smartphone sensing platform was established to detect ziram and Cu2+. The obtained flower-shaped CoMnOx could exhibit oxidase-, catalase-, and laccase-like activities. The oxidase activity mechanism of CoMnOx was deeply explored. O2 molecules adsorbed on the surface of CoMnOx were activated to produce a large amount of O2·-, and then, O2·- could extract acidic hydrogen from TMB to produce blue oxTMB. Meanwhile, TMB was oxidized directly to the blue product oxTMB via the high redox ability of Co species. According to the excellent oxidase-like activity of CoMnOx, a versatile colorimetric detection platform for ziram and Cu2+ was successfully constructed. The linear detection ranges for ziram and Cu2+ were 5~280 µM and 80~360 µM, and the detection limits were 1.475 µM and 3.906 µM, respectively. In addition, a portable smartphone platform for ziram and Cu2+ sensing was established for instant analysis, showing great application promise in the detection of real samples including environmental soil and water.


Asunto(s)
Técnicas Biosensibles , Colorimetría , Cobre , Teléfono Inteligente , Cobre/análisis , Límite de Detección , Lacasa , Nanoestructuras
7.
Br J Haematol ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38685577

RESUMEN

Multiple myeloma (MM) is an incurable plasma cell cancer in the bone marrow. Immunomodulatory drugs, such as lenalidomide (LEN) and pomalidomide, are backbone agents in MM treatment, and LEN resistance is commonly seen in the MM clinic. In this study, we presented that heterogeneous nuclear ribonucleoprotein U (hnRNPU) affected MM resistance to LEN via the regulation of target mRNA translation. hnRNPULow MM cells exhibited upregulated CRBN and IKZF1 proteins, stringent IKZF1/3 protein degradation upon LEN addition and increased sensitivity to LEN. RNA pulldown assays and RNA electrophoretic mobility shift assays revealed that hnRNPU bound to the 3'-untranslated region of CRBN and IKZF1 mRNA. A sucrose gradient assay suggested that hnRNPU specifically regulated CRBN and IKZF1 mRNA translation. The competition of hnRNPU binding to its target mRNAs by small RNAs with hnRNPU-binding sites restored MM sensitivity to LEN. hnRNPU function in vivo was confirmed in an immunocompetent MM mouse model constructed by the inoculation of Crbn-humanized murine 5TGM1 cells into CrbnI391V/+ mice. Overall, this study suggests a novel mechanism of LEN sensitivity in which hnRNPU represses CRBN and IKZF1 mRNA translation.

8.
ACS Biomater Sci Eng ; 10(4): 2398-2413, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38477550

RESUMEN

In vertebroplasty and kyphoplasty, bioinert poly(methyl methacrylate) (PMMA) bone cement is a conventional filler employed for quick stabilization of osteoporotic vertebral compression fractures (OVCFs). However, because of the poor osteointegration, excessive stiffness, and high curing temperature of PMMA, the implant loosens, the adjacent vertebrae refracture, and thermal necrosis of the surrounding tissue occurs frequently. This investigation addressed these issues by incorporating the small intestinal submucosa (SIS) into PMMA (SIS-PMMA). In vitro analyses revealed that this new SIS-PMMA bone cement had improved porous structure, as well as reduced compressive modulus and polymerization temperature compared with the original PMMA. Furthermore, the handling properties of SIS-PMMA bone cement were not significantly different from PMMA. The in vitro effect of PMMA and SIS-PMMA was investigated on MC3T3-E1 cells via the Transwell insert model to mimic the clinical condition or directly by culturing cells on the bone cement samples. The results indicated that SIS addition substantially enhanced the proliferation and osteogenic differentiation of MC3T3-E1 cells. Additionally, the bone cement's biomechanical properties were also assessed in a decalcified goat vertebrae model with a compression fracture, which indicated the SIS-PMMA had markedly increased compressive strength than PMMA. Furthermore, it was proved that the novel bone cement had good biosafety and efficacy based on the International Standards and guidelines. After 12 weeks of implantation, SIS-PMMA indicated significantly more osteointegration and new bone formation ability than PMMA. In addition, vertebral bodies with cement were also extracted for the uniaxial compression test, and it was revealed that compared with the PMMA-implanted vertebrae, the SIS-PMMA-implanted vertebrae had greatly enhanced maximum strength. Overall, these findings indicate the potential of SIS to induce efficient fixation between the modified cement surface and the host bone, thereby providing evidence that the SIS-PMMA bone cement is a promising filler for clinical vertebral augmentation.


Asunto(s)
Fracturas por Compresión , Fracturas de la Columna Vertebral , Humanos , Cementos para Huesos/farmacología , Cementos para Huesos/química , Polimetil Metacrilato/farmacología , Polimetil Metacrilato/química , Osteogénesis , Fracturas de la Columna Vertebral/cirugía , Columna Vertebral
9.
Sci Total Environ ; 927: 172058, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38552978

RESUMEN

With the rapid development of urbanization, the discharge of industrial wastewater has led to increasingly critical water pollution issues. Additionally, heavy metals, organic dyes, microorganisms and oil pollution often coexist and have persistence and harmfulness. Developing materials that can treat these complex pollutants simultaneously has important practical significance. In this study, a calcium alginate-based aerogel membrane (PANI@CA membrane) was prepared by spraying, polymerization, Ca2+ cross-linking and freeze-drying using aniline and sodium alginate as raw materials. Oil-water emulsion can be separated by PANI@CA membrane only under gravity, and the separation efficiency was as high as 99 %. At the same time, the membrane can effectively intercept or adsorb organic dyes and heavy metal ions. The removal rates of methylene blue and Congo red were above 92 % and 63 % respectively even after ten times of cyclic filtration. The removal rate of Pb2+ was up to 95 %. In addition, PANI@CA membrane shows excellent photothermal conversion ability, and it can effectively kill Staphylococcus aureus under 808 nm laser irradiation. PANI@CA membrane has the advantages of low cost, simple preparation, good stability and high recycling ability, and has potential application prospects in wastewater treatment.


Asunto(s)
Alginatos , Compuestos de Anilina , Antibacterianos , Membranas Artificiales , Metales Pesados , Contaminantes Químicos del Agua , Purificación del Agua , Alginatos/química , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Colorantes/química , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química
10.
J Environ Manage ; 356: 120701, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38531134

RESUMEN

In the context of the "United Nations Decade on Ecosystem Restoration", optimizing spatiotemporal arrangements for ecological restoration is an important approach to enhancing overall socioecological benefits for sustainable development. However, against the background of ecological degradation caused by the human use of most natural resources at levels that have approached or exceeded the safe and sustainable boundaries of ecosystems, it is key to explain how to optimize ecological restoration by classified management and optimal total benefits. In response to these issues, we combined spatial heterogeneity and temporal dynamics at the national scale in China to construct five ecological performance regimes defined by indicators that use planetary boundaries and ecological pressures which served as the basis for prioritizing ecological restoration areas and implementing zoning control. By integrating habitat conservation, biodiversity, water supply, and restoration cost constraints, seven ecological restoration scenarios were simulated to optimize the spatial layout of ecological restoration projects (ERPs). The results indicated that the provinces with unsustainable freshwater use, climate change, and land use accounted for more than 25%, 66.7%, and 25%, respectively, of the total area. Only 30% of the provinces experienced a decrease in environmental pressure. Based on the ecological performance regimes, ERP sites spanning the past 20 years were identified, and more than 50% of the priority areas were clustered in regime areas with increased ecological stress. As the restoration area targets doubled (40%) from the baseline (20%), a multi-objective scenario presents a trade-off between expanded ERPs in areas with highly beneficial effects and minimal restoration costs. In conclusion, a reasonable classification and management regime is the basis for targeted restoration. Coordinating multiple objectives and costs in ecological restoration is the key to maximizing socio-ecological benefits. Our study offered new perspectives on systematic and sustainable planning for ecological restoration.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Humanos , Biodiversidad , China , Abastecimiento de Agua
11.
Asia Pac J Oncol Nurs ; 11(4): 100402, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38495639

RESUMEN

Objective: To investigate current screening behaviors among high-risk individuals and analyse the factors that influence them. Methods: A cross-sectional of 1652 high-risk individuals were recruited in Fujian Province, China from February to October 2022. Socio-demographic characteristics of participants were collected and other survey measures included a lung cancer and lung cancer screening knowledge questionnaire and a stage of adoption algorithm. Standardized measures on surveys were comprised of the: Lung Cancer Screening Health Belief Scales, Cataldo Lung Cancer Stigma Scale, Generalized Anxiety Disorder Scale-7, Patient Health Questionnaire-9, and the Patient Trust in the Medical Profession Scale. Factors associated with screening behavior were identified using binary logistic regression analysis. Results: Lung cancer screening behavior stages were largely reported as Stage 1 and Stage 2 (64.4%). The facilitators of lung cancer screening included urban residence (OR = 1.717, 95% CI: 1.224-2.408), holding administrative positions (OR = 16.601, 95% CI: 2.118-130.126), previous lung cancer screening behavior (OR = 10.331, 95% CI: 7.463-14.302), media exposure focused on lung cancer screening (OR = 1.868, 95% CI: 1.344-2.596), a high level of knowledge about lung cancer and lung cancer screening (OR = 1.256, 95% CI: 1.185-1.332), perceived risk of lung cancer (OR = 1.123, 95% CI: 1.029-1.225) and lung cancer screening health beliefs (OR = 1.090, 95% CI: 1.067-1.113). A barrier to lung cancer screening was found to be social influence (influence of friends or family) (OR = 0.669, 95% CI: 0.465-0.964). Conclusions: This study found a low participation rate in lung cancer screening and identified eight factors that affected lung cancer screening behaviors among high-risk individuals. Findings suggest targeted lung cancer screening programs should be developed based on identified influencing factors in order to effectively promote awareness and uptake of lung cancer screening.

12.
MedComm (2020) ; 5(3): e475, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38463393

RESUMEN

Senescence-associated microRNAs (SA-miRNAs) are important molecules for aging regulation. While many aging-promoting SA-miRNAs have been identified, confirmed aging-suppressive SA-miRNAs are rare, that impeded our full understanding on aging regulation. In this study, we verified that miR-708 expression is decreased in senescent cells and aged tissues and revealed that miR-708 overexpression can alleviate cellular senescence and aging performance. About the molecular cascade carrying the aging suppressive action of miR-708, we unraveled that miR-708 directly targets the 3'UTR of the disabled 2 (Dab2) gene and inhibits the expression of DAB2. Interestingly, miR-708-caused DAB2 downregulation blocks the aberrant mammalian target of rapamycin complex 1 (mTORC1) activation, a driving metabolic event for senescence progression, and restores the impaired autophagy, a downstream event of aberrant mTORC1 activation. We also found that AMP-activated protein kinase (AMPK) activation can upregulate miR-708 via the elevation of DICER expression, and miR-708 inhibitor is able to blunt the antiaging effect of AMPK. In summary, this study characterized miR-708 as an aging-suppressive SA-miRNA for the first time and uncovered a new signaling cascade, in which miR-708 links the DAB2/mTOR axis and AMPK/DICER axis together. These findings not only demonstrate the potential role of miR-708 in aging regulation, but also expand the signaling network connecting AMPK and mTORC1.

13.
Cancer Nurs ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38537068

RESUMEN

BACKGROUND: Fear of cancer recurrence (FCR) significantly impacts the treatment and prognosis of lung cancer survivors. However, the mechanisms and factors contributing to FCR and its related consequences in lung cancer remain poorly understood. OBJECTIVE: To evaluate the validity of the Lee-Jones Theoretical Model of FCR in lung cancer survivors. METHODS: A cross-sectional survey was conducted among 257 lung cancer survivors who had undergone surgical treatment 1 year prior. The participants completed a comprehensive set of questionnaires, and the data were analyzed using structural equation modeling to test the proposed model. RESULTS: The analysis confirmed direct relationships between family resilience, coping behaviors, illness perceptions, FCR triggers, and FCR. Fear of cancer recurrence was also found to have a direct negative impact on quality of life (QOL). Furthermore, levels of family resilience, coping behaviors, illness perceptions, and FCR triggers indirectly influenced QOL through their association with FCR. CONCLUSIONS: This study provides partial support for the validity of the Lee-Jones Theoretical Model of FCR in lung cancer survivors. The findings contribute to a better understanding of FCR in this population and lay the groundwork for targeted interventions. Effective strategies to reduce FCR in lung cancer survivors should focus on enhancing family resilience, improving disease cognition, minimizing FCR triggers, and guiding patients toward adopting positive coping styles, ultimately improving their QOL. IMPLICATIONS FOR PRACTICE: Fear of cancer recurrence plays a vital role in relationships between internal and external cues and QOL. We can construct interventions to enhance the QOL of survivors based on the FCR influencing factors.

14.
Macromol Biosci ; : e2300549, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38514930

RESUMEN

The skin barrier is essential to prevent pathogenic invasion. When injury occurs, multiple biological pathways are promptly activated and wound repair processes are triggered. The effective healing of wounds is essential for survival, and dysfunction could result from aberrant wound repair. Preparation of many hydrogels, which involve the addition of growth/cell factors or mimic extracellular matrix (ECM) components, has not resulted in significant advances in tissue recovery. ECM contains a large number of biologically active molecules that activate a variety of cellular transduction pathways, which are essential for wound repair. Here, this work prepares hyaluronic acid-dopamine-thiourea (HA-DA-NCSN) hydrogels exhibiting ultrafast gelation in situ, following the methods of Xu et al., and subsequently designs a hydrogel containing ECM particles. In addition, the loaded ECM material, specifically decellularized ECM material, not only enhances the strength of the hydrogel network, but also delivers bioactive substances that make it a suitable platform for skin wound repair. The ECM hydrogel has great potential as an efficient bioactive wound dressing. This research suggests that this strategy is likely to improve skin wound closure in rat skin wound models.

15.
PLoS One ; 19(3): e0300461, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38512862

RESUMEN

Polycystic ovary syndrome (PCOS), a common endocrine and metabolic disorder affecting women in their reproductive years. Emerging evidence suggests that the maternal-fetal immune system is crucial for proper pregnancy. However, whether immune function is altered at the end of pregnancy in PCOS women and the underlying molecular mechanisms is currently unexplored. Herein, the basic maternal immune system was investigated (n = 136 in the control group; n = 103 in the PCOS group), and whole-transcriptome sequencing was carried out to quantify the mRNAs, miRNAs, and lncRNAs expression levels in fetal side placental tissue of women with PCOS. GO, KEGG, and GSEA analysis were employed for functional enrichment analysis. The process of identifying hub genes was conducted utilizing the protein-protein interaction network. CIBERSORT and Connectivity Map were deployed to determine immune cell infiltration and predict potential drugs, respectively. A network of mRNA-miRNA-lncRNA was constructed and then validated by qRT-PCR. First, red blood cell count, neutrophil count, lymphocyte count, hypersensitive C-reactive protein, and procalcitonin were significantly elevated, while placental growth factor was hindered in PCOS women. We identified 308 DEmRNAs, 77 DEmiRNAs, and 332 DElncRNAs in PCOS samples. Functional enrichment analysis revealed that there were significant changes observed in terms of the immune system, especially the chemokine pathway. Eight genes, including FOS, JUN, EGR1, CXCL10, CXCR1, CXCR2, CXCL11, and CXCL8, were considered as hub genes. Furthermore, the degree of infiltration of neutrophils was dramatically decreased in PCOS tissues. In total, 57 ceRNA events were finally obtained, and immune-related ceRNA networks were validated. Some potential drug candidates, such as enalapril and RS-100329, could have a function in PCOS therapy. This study represents the inaugural attempt to evaluate the immune system at the end of pregnancy and placental ceRNA networks in PCOS, indicating alterations in the chemokine pathway, which may impact fetal and placental growth, and provides new therapy targets.


Asunto(s)
MicroARNs , Síndrome del Ovario Poliquístico , ARN Largo no Codificante , Humanos , Femenino , Embarazo , Síndrome del Ovario Poliquístico/genética , Síndrome del Ovario Poliquístico/metabolismo , ARN Endógeno Competitivo , Placenta/metabolismo , Factor de Crecimiento Placentario/genética , MicroARNs/genética , MicroARNs/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Quimiocinas/genética , ARN Largo no Codificante/genética , Redes Reguladoras de Genes
16.
BMJ Open ; 14(3): e081011, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38553051

RESUMEN

BACKGROUND: Patients with chronic heart failure (CHF) often have a long duration of illness, difficulty in attending follow-up visits, and poor adherence to treatment. As a result, they frequently cannot receive guideline-directed medical therapy (GDMT) at the desired or maximum tolerable drug dosage. This leads to high hospitalisation and mortality rates for HF patients. Therefore, effective management and monitoring of patients with HF to ensure they receive GDMT is crucial for improving the prognosis. DESIGN AND METHODS: This is a multicentre, open-label, randomised, parallel-group study involving patients with CHF across five centres. The study aims to assess the impact of an optimised GDMT model for HF patients, established on a mobile health (mHealth) platform, compared with a control group. Patients must have a left ventricular ejection fraction of less than 50% and be receiving medication titration therapy that has not yet reached the target dose, with a modest increase in N-terminal pro-B-type natriuretic peptide level. The primary composite outcome is worsening HF events (hospitalisation or emergency treatment with intravenous fluids) or cardiovascular death. ETHICS AND DISSEMINATION: On 22 December 2021, this study received ethical approval from the Ethics Review Board of the First Affiliated Hospital of Nanjing Medical University, with the ethics number 2021-SR-530. All study participants will be informed of the research purpose and their participation will be voluntary. Informed consent will be obtained by providing and signing an informed consent form. We will ensure compliance with relevant laws and regulations regarding privacy and data protection. The results of this study will be published in a peer-reviewed academic journal. We will ensure that the dissemination of study results is accurate, clear and timely. TRIAL REGISTRATION NUMBER: ChiCTR2200056527.


Asunto(s)
Insuficiencia Cardíaca , Telemedicina , Humanos , Volumen Sistólico , Función Ventricular Izquierda , Enfermedad Crónica , Ensayos Clínicos Controlados Aleatorios como Asunto , Estudios Multicéntricos como Asunto
17.
J Virol ; 98(3): e0191523, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38334327

RESUMEN

As an intrinsic cellular mechanism responsible for the internalization of extracellular ligands and membrane components, caveolae-mediated endocytosis (CavME) is also exploited by certain pathogens for endocytic entry [e.g., Newcastle disease virus (NDV) of paramyxovirus]. However, the molecular mechanisms of NDV-induced CavME remain poorly understood. Herein, we demonstrate that sialic acid-containing gangliosides, rather than glycoproteins, were utilized by NDV as receptors to initiate the endocytic entry of NDV into HD11 cells. The binding of NDV to gangliosides induced the activation of a non-receptor tyrosine kinase, Src, leading to the phosphorylation of caveolin-1 (Cav1) and dynamin-2 (Dyn2), which contributed to the endocytic entry of NDV. Moreover, an inoculation of cells with NDV-induced actin cytoskeletal rearrangement through Src to facilitate NDV entry via endocytosis and direct fusion with the plasma membrane. Subsequently, unique members of the Rho GTPases family, RhoA and Cdc42, were activated by NDV in a Src-dependent manner. Further analyses revealed that RhoA and Cdc42 regulated the activities of specific effectors, cofilin and myosin regulatory light chain 2, responsible for actin cytoskeleton rearrangement, through diverse intracellular signaling cascades. Taken together, our results suggest that an inoculation of NDV-induced Src-mediated cellular activation by binding to ganglioside receptors. This process orchestrated NDV endocytic entry by modulating the activities of caveolae-associated Cav1 and Dyn2, as well as specific Rho GTPases and downstream effectors. IMPORTANCE: In general, it is known that the paramyxovirus gains access to host cells through direct penetration at the plasma membrane; however, emerging evidence suggests more complex entry mechanisms for paramyxoviruses. The endocytic entry of Newcastle disease virus (NDV), a representative member of the paramyxovirus family, into multiple types of cells has been recently reported. Herein, we demonstrate the binding of NDV to induce ganglioside-activated Src signaling, which is responsible for the endocytic entry of NDV through caveolae-mediated endocytosis. This process involved Src-dependent activation of the caveolae-associated Cav1 and Dyn2, as well as specific Rho GTPase and downstream effectors, thereby orchestrating the endocytic entry process of NDV. Our findings uncover a novel molecular mechanism of endocytic entry of NDV into host cells and provide novel insight into paramyxovirus mechanisms of entry.


Asunto(s)
Macrófagos , Enfermedad de Newcastle , Virus de la Enfermedad de Newcastle , Transducción de Señal , Internalización del Virus , Animales , Endocitosis , Gangliósidos/metabolismo , Macrófagos/metabolismo , Macrófagos/virología , Enfermedad de Newcastle/virología , Virus de la Enfermedad de Newcastle/fisiología , Proteínas de Unión al GTP rho/metabolismo
18.
Chempluschem ; : e202400027, 2024 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-38369654

RESUMEN

Membrane separation plays a crucial role in the current increasingly complex energy environment. Membranes prepared by metal-organic framework (MOF) materials usually possess unique advantages in common, such as uniform pore size, ultra-high porosity, enhanced selectivity and throughput, and excellent adsorption property, which have been contributed to the separation fields. In this comprehensive review, we summarize various designs and synthesized strategies of free-standing MOF and composite MOF-based membranes for water treatment. Special emphases are given not only on the effects of MOF on membrane performance, removal efficiencies, and elimination mechanisms, but also on the importance of MOF-based membranes for the applications of oily and micro-pollutant removal, adsorption, separation, and catalysis. The challenges and opportunities in the future for the industrial implementation of MOF-based membranes are also discussed.

19.
ACS Appl Mater Interfaces ; 16(9): 11389-11399, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38388355

RESUMEN

Due to the porous structure and high electrical conductivity of carbon materials, lithium-ion batteries (LIBs) frequently employ carbon cladding to modify silicon anodes. However, the high cost and convoluted manufacturing process have prevented widespread use of carbon-based materials. Due to the abundance of seaweed (Gelidium amansii: GAm), there is a developing interest in seaweed's additional uses. We present, for the first time in lithium-ion batteries, the modification of silicon anodes by algal biomass carbon, which was thoroughly analyzed morphologically, structurally, and electrochemically. Seaweed's biomass carbon is porous and highly linked, making it ideal for evenly enclosing silicon nanoparticles and supplying the porous carbon skeleton with sufficient nitrogen after annealing. The Si@ self-encapsulated naturally nitrogen-doped biochar prepared from seaweed composites displayed reversible capacities of 1111.61 mAh g-1 after 500 cycles at a high current of 1 A g-1 and 714.08 mAh g-1 after 1000 cycles at the same current density.

20.
Amino Acids ; 56(1): 16, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38358574

RESUMEN

Antimicrobial peptide (AMP) is the polypeptide, which protects the organism avoiding attack from pathogenic bacteria. Studies have shown that there were some antimicrobial peptides with molecular action mechanism involved in crossing the cell membrane without inducing severe membrane collapse, then interacting with cytoplasmic target-nucleic acid, and exerting antibacterial activity by interfacing the transmission of genetic information of pathogenic microorganisms. However, the relationship between the antibacterial activities and peptide structures was still unclear. Therefore, in the present work, a series of AMPs with a sequence of 20 amino acids was extracted from DBAASP database, then, quantitative structure-activity relationship (QSAR) methods were conducted on these peptides. In addition, novel antimicrobial peptides with  stronger antimicrobial activities were designed according to the information originated from the constructed models. Hence, the outcome of this study would lay a solid foundation for the in-silico design and exploration of novel antibacterial peptides with improved activity activities.


Asunto(s)
Péptidos , Relación Estructura-Actividad Cuantitativa , Péptidos/farmacología , Péptidos Antimicrobianos , Aminoácidos , Antibacterianos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...