Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Soc Mass Spectrom ; 30(12): 2785-2794, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31741268

RESUMEN

We report recent progresses of combining comprehensive two-dimensional gas chromatography (2DGC or GC × GC) separation, field ionization (FI), and time-of-flight mass spectrometry (TOF MS) for the detailed analysis of vacuum gas oil distillation (VGO) cuts. 2DGC separates petroleum molecules by the combination of boiling point and polarity. FI generates molecule ions-only mass spectra. TOF MS allows accurate mass analysis of hydrocarbon molecules. A new data analysis strategy is implemented for compositional analysis. First, all masses were separated into nominal mass classes. Since petroleum homologues have unique Kendrick mass defects (KMD), KMD plots were generated for easy recognition of homologues series within each nominal mass class. Finally, KMD windows were imposed for complete resolution of petroleum molecules. Using this approach, a total of 16 hydrocarbon types, 14 sulfur types, and their carbon number distributions were determined in the three VGO distillation cuts. Two series of geological biomarkers were also revealed by the analysis.

2.
Chemosphere ; 90(2): 521-6, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22967931

RESUMEN

Dispersants are important tools for stimulating the biodegradation of large oil spills. They are essentially a bioremediation tool - aiming to stimulate the natural process of aerobic oil biodegradation by dispersing oil into micron-sized droplets that become so dilute in the water column that the natural levels of biologically available nitrogen, phosphorus and oxygen are sufficient for microbial growth. Many studies demonstrate the efficacy of dispersants in getting oil off the water surface. Here we show that biodegradation of dispersed oil is prompt and extensive when oil is present at the ppm levels expected from a successful application of dispersants - more than 80% of the hydrocarbons of lightly weathered Alaska North Slope crude oil were degraded in 60 d at 8 °C in unamended New Jersey (USA) seawater when the oil was present at 2.5 ppm by volume. The apparent halftime of the biodegradation of the hydrocarbons was 13.8 d in the absence of dispersant, and 11 d in the presence of Corexit 9500 - similar to rates extrapolated from the field in the Deepwater Horizon response.


Asunto(s)
Petróleo/análisis , Agua de Mar/química , Contaminantes Químicos del Agua/análisis , Alaska , Biodegradación Ambiental , Lípidos/química , New Jersey , Nitrógeno/análisis , Fósforo/análisis , Tensoactivos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA