Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 7996, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39266508

RESUMEN

Advancements in human-engineered heart tissue have enhanced the understanding of cardiac cellular alteration. Nevertheless, a human model simulating pathological remodeling following myocardial infarction for therapeutic development remains essential. Here we develop an engineered model of myocardial repair that replicates the phased remodeling process, including hypoxic stress, fibrosis, and electrophysiological dysfunction. Transcriptomic analysis identifies nine critical signaling pathways related to cellular fate transitions, leading to the evaluation of seventeen modulators for their therapeutic potential in a mini-repair model. A scoring system quantitatively evaluates the restoration of abnormal electrophysiology, demonstrating that the phased combination of TGFß inhibitor SB431542, Rho kinase inhibitor Y27632, and WNT activator CHIR99021 yields enhanced functional restoration compared to single factor treatments in both engineered and mouse myocardial infarction model. This engineered heart tissue repair model effectively captures the phased remodeling following myocardial infarction, providing a crucial platform for discovering therapeutic targets for ischemic heart disease.


Asunto(s)
Dioxoles , Fibrosis , Infarto del Miocardio , Piridinas , Ingeniería de Tejidos , Animales , Infarto del Miocardio/patología , Infarto del Miocardio/terapia , Infarto del Miocardio/metabolismo , Infarto del Miocardio/genética , Ratones , Humanos , Piridinas/farmacología , Piridinas/uso terapéutico , Ingeniería de Tejidos/métodos , Dioxoles/farmacología , Dioxoles/uso terapéutico , Miocardio/patología , Miocardio/metabolismo , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Benzamidas/farmacología , Benzamidas/uso terapéutico , Modelos Animales de Enfermedad , Transducción de Señal , Masculino , Ratones Endogámicos C57BL , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Remodelación Ventricular/efectos de los fármacos , Factor de Crecimiento Transformador beta/metabolismo , Corazón/fisiopatología , Corazón/efectos de los fármacos , Amidas
2.
Adv Sci (Weinh) ; : e2406656, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39248322

RESUMEN

The inhibition of Nav1.7 is a promising strategy for the development of analgesic treatments. Spider venom-derived peptide toxins are recognized as significant sources of Nav1.7 inhibitors. However, their development has been impeded by limited selectivity. In this study, eight peptide toxins from three distinct spider venom Nav channel families demonstrated robust inhibition of hNav1.7, rKv4.2, and rKv4.3 (rKv4.2/4.3) currents, exhibiting a similar mode of action. The analysis of structure and function relationship revealed a significant overlap in the pharmacophore responsible for inhibiting hNav1.7 and rKv4.2 by HNTX-III, although Lys25 seems to play a more pivotal role in the inhibition of rKv4.2/4.3. Pharmacophore-guided rational design is employed for the development of an mGpTx1 analogue, mGpTx1-SA, which retains its inhibition of hNav1.7 while significantly reducing its inhibition of rKv4.2/4.3 and eliminating cardiotoxicity. Moreover, mGpTx1-SA demonstrates potent analgesic effects in both inflammatory and neuropathic pain models, accompanied by an improved in vivo safety profile. The results suggest that off-target inhibition of rKv4.2/4.3 by specific spider peptide toxins targeting hNav1.7 may arise from a conserved binding motif. This insight promises to facilitate the design of hNav1.7-specific analgesics, aimed at minimizing rKv4.2/4.3 inhibition and associated toxicity, thereby enhancing their suitability for therapeutic applications.

3.
J Biol Chem ; 300(5): 107294, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38636665

RESUMEN

Exenatide, a promising cardioprotective agent, protects against cardiac structural remodeling and diastolic dysfunction. Combined blockade of sodium and potassium channels is valuable for managing atrial fibrillation (AF). Here, we explored whether exenatide displayed anti-AF effects by inhibiting human Kv1.5 and Nav1.5 channels. We used the whole-cell patch-clamp technique to investigate the effects of exenatide on hKv1.5 and hNav1.5 channels expressed in human embryonic kidney 293 cells and studied the effects of exenatide on action potential (AP) and other cardiac ionic currents in rat atrial myocytes. Additionally, an electrical mapping system was used to explore the effects of exenatide on electrical properties and AF activity in isolated rat hearts. Finally, a rat AF model, established using acetylcholine and calcium chloride, was employed to evaluate the anti-AF potential of exenatide in rats. Exenatide reversibly suppressed IKv1.5 with IC50 of 3.08 µM, preferentially blocked the hKv1.5 channel in its closed state, and positively shifted the voltage-dependent activation curve. Exenatide also reversibly inhibited INav1.5 with IC50 of 3.30 µM, negatively shifted the voltage-dependent inactivation curve, and slowed its recovery from inactivation with significant use-dependency at 5 and 10 Hz. Furthermore, exenatide prolonged AP duration and suppressed the sustained K+ current (Iss) and transient outward K+ current (Ito), but without inhibition of L-type Ca2+ current (ICa,L) in rat atrial myocytes. Exenatide prevented AF incidence and duration in rat hearts and rats. These findings demonstrate that exenatide inhibits IKv1.5 and INav1.5in vitro and reduces AF susceptibility in isolated rat hearts and rats.


Asunto(s)
Potenciales de Acción , Fibrilación Atrial , Exenatida , Canal de Potasio Kv1.5 , Miocitos Cardíacos , Canal de Sodio Activado por Voltaje NAV1.5 , Bloqueadores del Canal de Sodio Activado por Voltaje , Animales , Humanos , Masculino , Ratas , Potenciales de Acción/efectos de los fármacos , Fibrilación Atrial/tratamiento farmacológico , Fibrilación Atrial/metabolismo , Exenatida/farmacología , Exenatida/uso terapéutico , Células HEK293 , Canal de Potasio Kv1.5/antagonistas & inhibidores , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/genética , Ratas Sprague-Dawley , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología , Bloqueadores del Canal de Sodio Activado por Voltaje/uso terapéutico
4.
Plants (Basel) ; 13(4)2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38498537

RESUMEN

Aboveground biomass (AGB) is a key indicator of the physiological status and productivity of grasslands, and its accurate estimation is essential for understanding regional carbon cycles. In this study, we developed a suitable AGB model for grasslands in Xinjiang based on the random forest algorithm, using AGB observation data, remote sensing vegetation indices, and meteorological data. We estimated the grassland AGB from 2000 to 2022, analyzed its spatiotemporal changes, and explored its response to climatic factors. The results showed that (1) the model was reliable (R2 = 0.55, RMSE = 64.33 g·m-2) and accurately estimated the AGB of grassland in Xinjiang; (2) the spatial distribution of grassland AGB in Xinjiang showed high levels in the northwest and low values in the southeast. AGB showed a growing trend in most areas, with a share of 61.19%. Among these areas, lowland meadows showed the fastest growth, with an average annual increment of 0.65 g·m-2·a-1; and (3) Xinjiang's climate exhibited characteristics of warm humidification, and grassland AGB showed a higher correlation with precipitation than temperature. Developing remote sensing models based on random forest algorithms proves an effective approach for estimating AGB, providing fundamental data for maintaining the balance between grass and livestock and for the sustainable use and conservation of grassland resources in Xinjiang, China.

5.
Front Pharmacol ; 14: 1242042, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37426817

RESUMEN

[This corrects the article DOI: 10.3389/fphar.2023.1177003.].

6.
Front Pharmacol ; 14: 1177003, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37324483

RESUMEN

Introduction: As the third generation of epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), osimertinib has demonstrated more significant cardiotoxicity than previous generations of EGFR-TKIs. Investigating the mechanism of osimertinib cardiotoxicity can provide a reference for a comprehensive understanding of osimertinib-induced cardiotoxicity and the safety of the usage of this drug in clinical practice. Methods: Multichannel electrical mapping with synchronous ECG recording was used to investigate the effects of varying osimertinib concentrations on electrophysiological indicators in isolated Langendorff-perfused hearts of guinea pigs. Additionally, a whole-cell patch clamp was used to detect the impact of osimertinib on the currents of hERG channels transfected into HEK293 cells and the Nav1.5 channel transfected into Chinese hamster ovary cells and acute isolated ventricular myocytes from SD rats. Results: Acute exposure to varying osimertinib concentrations produced prolongation in the PR interval, QT interval, and QRS complex in isolated hearts of guinea pigs. Meanwhile, this exposure could concentration-dependently increase the conduction time in the left atrium, left ventricle, and atrioventricular without affecting the left ventricle conduction velocity. Osimertinib inhibited the hERG channel in a concentration-dependent manner, with an IC50 of 2.21 ± 1.29 µM. Osimertinib also inhibited the Nav1.5 channel in a concentration-dependent manner, with IC50 values in the absence of inactivation, 20% inactivation, and 50% inactivation of 15.58 ± 0.83 µM, 3.24 ± 0.09 µM, and 2.03 ± 0.57 µM, respectively. Osimertinib slightly inhibited the currents of L-type Ca2+ channels in a concentration-dependent manner in acutely isolated rat ventricular myocytes. Discussion: Osimertinib could prolong the QT interval; PR interval; QRS complex; left atrium, left ventricle, and atrioventricular conduction time in isolated guinea pig hearts. Furthermore, osimertinib could block the hERG, Nav1.5, and L-type Ca2+ channels in concentration-dependent manners. Therefore, these findings might be the leading cause of the cardiotoxicity effects, such as QT prolongation and decreased left ventricular ejection fraction.

7.
Oxid Med Cell Longev ; 2022: 9014155, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35464763

RESUMEN

Diabetes mellitus (DM) is associated with mitochondrial dysfunction and oxidative stress that can lead to diabetic cardiomyopathy (DCM), which can often remain undetected until late stages of the disease. However, myocardial injury occurs before the onset of measurable cardiac dysfunction, although its molecular correlates are poorly understood. In this study, we made a DM rat induced by a high-fat diet combined with low and high doses of streptozotocin (STZ) to emulate pre and early DCM. RNA-sequencing analysis of ventricular tissue revealed a differential transcriptome profile and abnormal activation of pathways involved in fatty acid metabolism, oxidative phosphorylation, cardiac structure and function, insulin resistance, calcium signalling, apoptosis, and TNF signalling. Moreover, using high glucose-treated human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM), we recapitulated the cardiac cellular phenotype of DM and identified several molecular correlates that may promote the development of DCM. In conclusion, we have developed an experimental framework to target pathways underlying the progression of DCM.


Asunto(s)
Diabetes Mellitus Experimental , Cardiomiopatías Diabéticas , Células Madre Pluripotentes Inducidas , Animales , Apoptosis , Diabetes Mellitus Experimental/tratamiento farmacológico , Cardiomiopatías Diabéticas/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Miocitos Cardíacos/metabolismo , Estrés Oxidativo , Ratas , Estreptozocina/efectos adversos
8.
ACS Pharmacol Transl Sci ; 4(5): 1639-1653, 2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34661080

RESUMEN

Hydroxychloroquine (HCQ), clinically established in antimalarial and autoimmune therapy, recently raised cardiac arrhythmogenic concerns when used alone or with azithromycin (HCQ+AZM) in Covid-19. We report complementary, experimental, studies of its electrophysiological effects. In patch clamped HEK293 cells expressing human cardiac ion channels, HCQ inhibited IKr and IK1 at a therapeutic concentrations (IC50s: 10 ± 0.6 and 34 ± 5.0 µM). INa and ICaL showed higher IC50s; Ito and IKs were unaffected. AZM slightly inhibited INa, ICaL, IKs, and IKr, sparing IK1 and Ito. (HCQ+AZM) inhibited IKr and IK1 (IC50s: 7.7 ± 0.8 and 30.4 ± 3.0 µM), sparing INa, ICaL, and Ito. Molecular induced-fit docking modeling confirmed potential HCQ-hERG but weak AZM-hERG binding. Effects of µM-HCQ were studied in isolated perfused guinea-pig hearts by multielectrode, optical RH237 voltage, and Rhod-2 mapping. These revealed reversibly reduced left atrial and ventricular action potential (AP) conduction velocities increasing their heterogeneities, increased AP durations (APDs), and increased durations and dispersions of intracellular [Ca2+] transients, respectively. Hearts also became bradycardic with increased electrocardiographic PR and QRS durations. The (HCQ+AZM) combination accentuated these effects. Contrastingly, (HCQ+AZM) and not HCQ alone disrupted AP propagation, inducing alternans and torsadogenic-like episodes on voltage mapping during forced pacing. O'Hara-Rudy modeling showed that the observed IKr and IK1 effects explained the APD alterations and the consequently prolonged Ca2+ transients. The latter might then downregulate INa, reducing AP conduction velocity through recently reported INa downregulation by cytosolic [Ca2+] in a novel scheme for drug action. The findings may thus prompt future investigations of HCQ's cardiac safety under particular, chronic and acute, clinical situations.

9.
Br J Pharmacol ; 177(2): 402-419, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31625597

RESUMEN

BACKGROUND AND PURPOSE: Hypertension has been the leading preventable cause of premature death worldwide. The aim of this study was to design a more efficient vaccine against novel targets for the treatment of hypertension. EXPERIMENTAL APPROACH: The epitope CE12, derived from the human L-type calcium channel (CaV 1.2), was designed and conjugated with Qß bacteriophage virus-like particles to test the efficacy in hypertensive animals. Further, the hepatitis B core antigen (HBcAg)-CE12-CQ10 vaccine, a bivalent vaccine based on HBcAg virus-like particles and targeting both human angiotensin AT1 receptors and CaV 1.2 channels, was developed and evaluated in hypertensive rodents. KEY RESULTS: The Qß-CE12 vaccine effectively decreased the BP in hypertensive rodents. A monoclonal antibody against CE12 specifically bound to L-type calcium channels and inhibited channel activity. Injection with monoclonal antibody against CE12 effectively reduced the BP in angiotensin II-induced hypertensive mice. The HBcAg-CE12-CQ10 vaccine showed antihypertensive effects in hypertensive mice and relatively superior antihypertensive effects in spontaneously hypertensive rats and ameliorated L-NAME-induced renal injury. In addition, no obvious immune-mediated damage or electrophysiological adverse effects were detected. CONCLUSION AND IMPLICATIONS: Immunotherapy against both AT1 receptors and CaV 1.2 channels decreased the BP in hypertensive rodents effectively and provided protection against hypertensive target organ damage without obvious feedback activation of renin-angiotensin system or induction of dominant antibodies against the carrier protein. Thus, the HBcAg-CE12-CQ10 vaccine may provide a novel and promising therapeutic approach for hypertension.


Asunto(s)
Presión Sanguínea/efectos de los fármacos , Canales de Calcio Tipo L/inmunología , Hipertensión/prevención & control , Receptor de Angiotensina Tipo 1/inmunología , Vacunas Combinadas/farmacología , Vacunas de Partículas Similares a Virus/farmacología , Angiotensina II , Animales , Canales de Calcio Tipo L/metabolismo , Modelos Animales de Enfermedad , Epítopos , Hipertensión/inmunología , Hipertensión/metabolismo , Hipertensión/fisiopatología , Masculino , Ratones Endogámicos BALB C , Ratas Endogámicas SHR , Receptor de Angiotensina Tipo 1/metabolismo , Vacunación
10.
J Pharmacol Sci ; 140(3): 284-290, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31481348

RESUMEN

The human ether-a-go-go-related gene (hERG) encodes the K+ channel that carries the rapid component of the delayed rectifier current in the human heart. Reduction of hERG activity induced by gene mutations or pharmacological inhibition is responsible for the type 2 form of long QT syndrome in patients which can develop into ventricular arrhythmia and sudden cardiac death. Therefore, pharmacological activation of hERG may lead to therapeutic potential for cardiac arrhythmias. In this study we characterized a small and novel compound, N-(2-(tert-butyl)phenyl)-6-(4-chlorophenyl)-4-(trifluoromethyl) nicotinamide, HW-0168, that exhibits potent activation of hERG channel with an EC50 of 0.41 ± 0.2 µM. Using whole-cell patch clamp recording of HEK293 cells stably expressed hERG channels, we found that HW-0168 dramatically increased current amplitude about 2.5 folds and slowed down current inactivation about 4 folds. HW-0168 shifted the voltage-dependent channel activation to hyperpolarizing direction about 3.7 mV and the voltage-dependent channel inactivation to depolarizing direction about 9.4 mV. In addition, recording of guinea-pig ventricular cells confirmed that HW-0168 shortened the action potential duration. In conclusion, we identified a novel hERG channel activator HW-0168 that can be used for studying the physiological role of hERG in cardiac myocytes and may be beneficial for treating long QT syndrome.


Asunto(s)
Canales de Potasio Éter-A-Go-Go/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Potenciales de Acción/efectos de los fármacos , Animales , Arritmias Cardíacas/tratamiento farmacológico , Arritmias Cardíacas/metabolismo , Línea Celular , Cobayas , Células HEK293 , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/metabolismo , Humanos , Síndrome de QT Prolongado/tratamiento farmacológico , Síndrome de QT Prolongado/metabolismo , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA