Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 293
Filtrar
1.
Sensors (Basel) ; 24(15)2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39123953

RESUMEN

In complex maritime scenarios where the grayscale polarity of ships is unknown, existing infrared ship detection methods may struggle to accurately detect ships among significant interference. To address this issue, this paper first proposes an infrared image smoothing method composed of Grayscale Morphological Reconstruction (GMR) and a Relative Total Variation (RTV). Additionally, a detection method considering the grayscale uniformity of ships and integrating shape and spatiotemporal features is established for detecting bright and dark ships in complex maritime scenarios. Initially, the input infrared images undergo opening (closing)-based GMR to preserve dark (bright) blobs with the opposite suppressed, followed by smoothing the image with the relative total variation model to reduce clutter and enhance the contrast of the ship. Subsequently, Maximally Stable Extremal Regions (MSER) are extracted from the smoothed image as candidate targets, and the results from the bright and dark channels are merged. Shape features are then utilized to eliminate clutter interference, yielding single-frame detection results. Finally, leveraging the stability of ships and the fluctuation of clutter, true targets are preserved through a multi-frame matching strategy. Experimental results demonstrate that the proposed method outperforms ITDBE, MRMF, and TFMSER in seven image sequences, achieving accurate and effective detection of both bright and dark polarity ship targets.

2.
Sci Rep ; 14(1): 17899, 2024 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095516

RESUMEN

SLAMF9, a member of the conserved lymphocyte activation molecules family (SLAMF), has been less investigated compared to other SLAMs, especially concerning its implications across various cancer types. In our systematic pan-cancer investigation, we observed elevated SLAMF9 expression in various tumor tissues, which was correlated with reduced patient survival across most malignancies. Correlation analyses further revealed significant associations between SLAMF9 expression and immune cell infiltrates, immune checkpoint inhibitors, tumor mutation load, microsatellite instability, and epithelial-mesenchymal transition (EMT) scores. Cell-based assays demonstrated that SLAMF9 knockdown attenuated the proliferative, motile, and invasive capacities of colorectal cancer (CRC) cells. In a nude mouse xenograft model, suppression of SLAMF9 expression substantially inhibited tumor growth. These findings highlight the potential of SLAMF9 as a prognostic and therapeutic biomarker across tumors, with notable implications for CRC cell proliferation and migration.


Asunto(s)
Proliferación Celular , Neoplasias Colorrectales , Familia de Moléculas Señalizadoras de la Activación Linfocitaria , Animales , Femenino , Humanos , Ratones , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Movimiento Celular , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Ratones Desnudos , Inestabilidad de Microsatélites , Pronóstico , Familia de Moléculas Señalizadoras de la Activación Linfocitaria/metabolismo , Familia de Moléculas Señalizadoras de la Activación Linfocitaria/genética
3.
Mol Pharm ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39056442

RESUMEN

Cancer is a significant health concern, increasingly showing insensitivity to traditional treatments, highlighting the urgent need for safer and more practical treatment options. Ribonucleic acid (RNA) gene therapy drugs have demonstrated promising potential in preclinical and clinical trials for antitumor therapy by regulating tumor-related gene expression. However, RNA's poor membrane permeability and stability restrict its effectiveness in entering and being utilized in cells. An appropriate delivery system is crucial for achieving targeted tumor effects. The tumor microenvironment (TME), characterized by acidity, hypoxia, enzyme overexpression, elevated glutathione (GSH) concentration, and excessive reactive oxygen species (ROS), is essential for tumor survival. Furthermore, these distinctive features can also be harnessed to develop intelligent drug delivery systems. Various nanocarriers that respond to the TME have been designed for RNA drug delivery, showing the advantages of tumor targeting and low toxicity. This Review discusses the abnormal changes of components in TME, therapeutic RNAs' roles, underlying mechanisms, and the latest developments in utilizing vectors that respond to microenvironments for treating tumors. We hope it provides insight into creating and optimizing RNA delivery vectors to improve their effectiveness.

4.
J Fungi (Basel) ; 10(7)2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39057370

RESUMEN

Sisal is an important tropical cash crop in southern China. Unfortunately, it is threatened by various diseases. In 2022, a new disease tentatively named marginal leaf blight disease (MLBD) was first observed in sisal fields across Guangxi and Guangdong provinces, with an incidence rate ranging from 13% to 30%. In this work, to isolate and identify the pathogens causing MLBD, sisal leaves exhibiting the typical MLBD symptoms were collected, and nine strains were obtained. Pathogenicity tests, morphological observations, and phylogenetic analyses confirmed that two strains, namely 22GX1-3 and 22GD1-4, identified as Phaeosphaeriopsis obtusispora, were the causative pathogens of MLBD. Further investigations into the biological characteristics of P. obtusispora showed that its mycelia exhibited optimal growth on PDA medium, with the most favourable temperature and pH being 25 °C and 7.0, respectively. The mycelia could grow in temperatures ranging from 10 °C to 32 °C but ceased at 35 °C. Lactose and yeast extract powder were also identified as the optimal carbon and nitrogen sources, respectively. Additionally, the effectiveness of various control agents was assessed on a single strain, 22GX1-3. Among the twelve fungicides tested, difenoconazole was proven the most effective, with an EC50 value of 0.5045 µg/mL. To our knowledge, this is the first report for sisal MLBD caused by P. obtusispora. Our results provide crucial pieces of information for the development of effective management strategies to control sisal MLBD caused by P. obtusispora.

5.
Arch Pharm Res ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39060656

RESUMEN

Cancer is a global public health problem. Natural polysaccharides have been shown to enhance the effectiveness of cancer treatments. Polygonatum sibiricum (PS) has been used for millennia to treat diverse diseases. PS comprises numerous active constituents, including saponins, peptides, volatile oils, polysaccharides, and lectins. Many studies have highlighted the crucial role of polysaccharides in PS. Modern studies have shown that Polygonatum sibiricum polysaccharide (PSP) exhibits diverse pharmacological activities, including immunomodulatory, antitumor, antioxidant, and anti-aging effects. However, further study of the antitumor mechanisms is difficult because the activities of PSP are closely associated with its complex structural features and the different molecular weights of its components. Therefore, this review focuses on the research background and the extraction and purification of PSP. Studies related to the mechanism of the antitumor effects of PSP constituents of different molecular weights are also summarized, and perspectives on PSP research are presented.

6.
Transl Cancer Res ; 13(5): 2387-2407, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38881943

RESUMEN

Background: The nectin adhesion molecule CD112, an important component of tumor progression, belongs to the nectin family. However, a comprehensive evaluation of its clinical relevance and mechanism in various cancers is yet to be conducted. Methods: This investigation fully examined the relationship between prognosis and CD112 expression. We clarified the function of CD112 in tumor immunity by employing The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases. This involved examining its connections to tumor mutation burden (TMB), DNA methylation, tumor immune invasion, mismatch repair (MMR), microsatellite instability (MSI), and common immune checkpoint inhibitors (ICIs). Additionally, the impact of CD112 knockdown on cell function was examined in colorectal cancer (CRC) cell lines. Results: In the current study, we found malignant tissues express high levels of CD112, which was related to TMB, MMR, MSI, and DNA methylation. Survival analysis indicated that patients with high CD112 expression had an unfavorable prognosis more frequently. In addition, CD112 expression was negatively associated with infiltration levels of CD4 positive (CD4+) T cells, CD8 positive (CD8+) T cells, and T cells. Western blotting and pathway enrichment analysis showed that CD112 is significantly linked to epithelial-to-mesenchymal transition (EMT). Additionally, CRC cells migrate and proliferate less when CD112 was knocked down. CD112 expression was found to be negatively associated with anti-programmed cell death protein 1 (PD-1) and anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) treatment outcomes in patients. Conclusions: CD112 may act as a possible prognostic marker in immune therapy and may stimulate tumor growth by upregulating the EMT pathway.

7.
Kidney Dis (Basel) ; 10(3): 193-199, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38835405

RESUMEN

Introduction: Roxadustat, the first-in-class drug for the treatment of renal anemia, has demonstrated efficacy in renal anemia with microinflammation. Additional data are needed regarding the efficacy of roxadustat on renal anemia with systemic macroinflammation. Methods: Three cohorts of renal anemia based on the basic level of high-sensitivity CRP were included. Patients with hsCRP ≤2 mg/L were selected as non-inflammation (NI) group; 2< hsCRP ≤10 mg/L as microinflammation (MI) group; hsCRP≥10 mg/L as macroinflammation (MA) group. Patients received oral roxadustat three times per week for 52 weeks. The primary end point was the hemoglobin level over weeks 12-52. The second end point was the cumulative proportion of patients achieving hemoglobin response by the end of week 12. Results: A total of 107 patients with chronic kidney diseases (CKDs) were enrolled. Overall, the baseline hemoglobin level of patients was 79.99 ± 11.20 g/L. Roxadustat could significantly increase the hemoglobin level in all of the three groups and did not show any significant difference (p > 0.05, respectively). Meanwhile, compared with that of the NI group, there was no significant difference in hemoglobin response rate in the MA group both at week 12 (p = 0.06; 95% confidence interval [CI], 0.9531-13.75) and week 52 (p = 0.37; 95% CI, 0.5080-7.937). Moreover, the hemoglobin response was independent of baseline hsCRP level (p = 0.72, 95% CI, -0.1139 to 0.0794). More importantly, roxadustat significantly reduced ferritin and serum iron levels and increased total iron-binding capacity in the three groups, which showed no significant differences among the three groups (p > 0.05, respectively). Conclusion: Roxadustat significantly improves anemia in CKD patients with systemic macroinflammation.

8.
Cancer Lett ; 590: 216842, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38582395

RESUMEN

Platinum-based neoadjuvant therapy represented by cisplatin is widely employed in treating Triple-Negative Breast Cancer (TNBC), a particularly aggressive subtype of breast cancer. Nevertheless, the emergence of cisplatin resistance presents a formidable challenge to clinical chemotherapy efficacy. Herein, we revealed the critical role of tumor microenvironment (TME) derived exosomal miR-3960 and phosphorylation at the S16 site of PIMREG in activating NF-κB signaling pathway and promoting cisplatin resistance of TNBC. Detailed regulatory mechanisms revealed that SOD1-upregulated fibroblasts secrete miR-3960 and are then transported into TNBC cells via exosomes. Within TNBC cells, miR-3960 targets and inhibits the expression of BRSK2, an AMPK protein kinase family member. Furthermore, we emphasized that BRSK2 contributes to ubiquitination degradation of PIMREG and modulates subsequent activation of the NF-κB signaling pathway by mediating PIMREG phosphorylation at the S16 site, ultimately affects the cisplatin resistance of TNBC. In conclusion, our research demonstrated the crucial role of SOD1high fibroblast, exosomal miR-3960 and S16 site phosphorylated PIMREG in regulating the NF-κB signaling pathway and cisplatin resistance of TNBC. These findings provided significant potential as biomarkers for accurately diagnosing cisplatin-resistant TNBC patients and guiding chemotherapy strategy selection.


Asunto(s)
Cisplatino , Resistencia a Antineoplásicos , Exosomas , MicroARNs , Neoplasias de la Mama Triple Negativas , Animales , Femenino , Humanos , Ratones , Antineoplásicos/farmacología , Línea Celular Tumoral , Cisplatino/farmacología , Exosomas/metabolismo , Exosomas/genética , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , MicroARNs/genética , MicroARNs/metabolismo , FN-kappa B/metabolismo , FN-kappa B/genética , Fosforilación , Transducción de Señal/efectos de los fármacos , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/metabolismo , Microambiente Tumoral
9.
Eur J Pharmacol ; 972: 176558, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38614382

RESUMEN

Inhibitors of polo-like kinase (PLK) are currently being evaluated as anticancer drugs. However, the molecular mechanism of PLK inhibitor-induced cell death is not fully understood. In this study, we found that GW843682X and BI2536, two inhibitors of PLK1, significantly induced cell death in multiple type cells. The induction of cell death was related to the preferring expression of PLK1. However, in human umbilical vascular endothelial cells (HUVEC) and human colorectal carcinoma cells, which expressed higher levels of both PLK1 and PLK2, PLK1 inhibitors induced very low levels of cell death. Clinical analysis reveals PLK1 presence in 26 of 30 NPC tumor tissues. In in vivo NPC lung metastasis nude mouse models, PLK1 inhibitors decreased NPC progress. Mechanistically, the PLK1 inhibitor did not activate p53, and the cell death was not reversed by p53 inhibition. Moreover, PLK1 inhibitor-induced cell death was PARP- and caspase-independent. Although PLK1 inhibitors induced down-regulation of calpain inhibitor calpastatin and calpain was activated by PLK1 inhibition, calpain blocking did not reverse cell death induced by PLK1 inhibitors, suggesting the non-involvement of calpain. Surprisingly, we found that PLK1 inhibitors induced the activation of proteasome, and the treatment of cells with PLK1 inhibitors reduced the levels of ubiquitinated proteins. And proteasome inhibitors reversed cell death induced by PLK1 inhibitors in various cell types in which PLK1 was preferentially expressed. Moreover, PLK1 inhibition reversed the degradation of proteins including p53, caspase 8, PARP and calpastatin. These results suggest that the activation of proteasome is critical for cell death induced by PLK1 inhibition.


Asunto(s)
Proteínas de Ciclo Celular , Muerte Celular , Quinasa Tipo Polo 1 , Complejo de la Endopetidasa Proteasomal , Proteínas Serina-Treonina Quinasas , Proteínas Proto-Oncogénicas , Humanos , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/metabolismo , Animales , Complejo de la Endopetidasa Proteasomal/metabolismo , Muerte Celular/efectos de los fármacos , Ratones , Línea Celular Tumoral , Inhibidores de Proteínas Quinasas/farmacología , Ratones Desnudos , Pteridinas/farmacología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Calpaína/antagonistas & inhibidores , Calpaína/metabolismo , Activación Enzimática/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Proteína p53 Supresora de Tumor/metabolismo , Antineoplásicos/farmacología
10.
J Chromatogr A ; 1723: 464906, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38643739

RESUMEN

Consumer concerns over healthy diets are increasing as a result of the toxicity and persistence of pesticide residues in foodstuffs. Developing sensitive and high-throughput monitoring techniques for these trace residues is seen as an essential step in ensuring food safety. An automatic and sensitive multi-residue analytical method was developed and validated for the simultaneous determination of 230 compounds, including pesticides and their hazardous metabolites, in fermented soy products. The method included preparing the sample using on-line extraction and clean-up system based on accelerated solvent extraction (ASE), then determining the analytes using GC-MS/MS techniques. The homogenized samples (soy sauce, douchi, and sufu) were automatically extracted at 80 °C and 10.3 MPa and at the same time, in situ cleaned by 300 mg of primary secondary amine (PSA) combined with 20 mg of hydroxylated multi-walled carbon nanotubes in an extraction cell. The method obtained excellent calibration linearity (r > 0.9220) and a satisfactory analysis of the targeted compounds, which were evaluated with matrix-matched calibration standards over the range of 5-500 µg L-1. The limit of detections (LODs) of analytes were in the range of 0.01-1.29 µg kg-1, 0.01-1.39 µg kg-1, and 0.01-1.34 µg kg-1 in soy sauce, douchi, and sufu, respectively. The limit of quantifications (LOQs), which defined as the lowest spiking level, were set at 5.0 µg kg-1. The recoveries were within 70-120 % for over 95 % of the analytes, and the relative standard deviations (RSDs) were below 13.6 %. Moreover, a positive detection rate of 47 % were obtained when the proposed method was used on 15 real fermented soy products. These results suggested that the developed high-throughput method is highly feasible for monitoring of these target analytes in trace level.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas , Límite de Detección , Residuos de Plaguicidas , Alimentos de Soja , Espectrometría de Masas en Tándem , Residuos de Plaguicidas/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Alimentos de Soja/análisis , Espectrometría de Masas en Tándem/métodos , Reproducibilidad de los Resultados , Contaminación de Alimentos/análisis , Fermentación
11.
Oncogene ; 43(21): 1581-1593, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38565942

RESUMEN

Deubiquitinating enzymes (DUBs) are promising targets for cancer therapy because of their pivotal roles in various physiological and pathological processes. Among these, ubiquitin-specific peptidase 26 (USP26) is a protease with crucial regulatory functions. Our study sheds light on the upregulation of USP26 in colorectal cancer (CRC), in which its increased expression correlates with an unfavorable prognosis. Herein, we evidenced the role of USP26 in promoting CRC tumorigenesis in a parkin RBR E3 ubiquitin-protein ligase (PRKN) protein-dependent manner. Our investigation revealed that USP26 directly interacted with PRKN protein, facilitating its deubiquitination, and subsequently reducing its activity. Additionally, we identified the K129 site on PRKN as a specific target for USP26-mediated deubiquitination. Our research highlights that a K-to-R mutation at the site on PRKN diminishes its potential for activation and ability to mediate mitophagy. In summary, our findings underscore the significance of USP26-mediated deubiquitination in restraining the activation of the PRKN-mediated mitophagy pathway, ultimately driving CRC tumorigenesis. This study not only elucidated the multifaceted role of USP26 in CRC but also introduced a promising avenue for therapeutic exploration through the development of small molecule inhibitors targeting USP26. This strategy holds promise as a novel therapeutic approach for CRC.


Asunto(s)
Carcinogénesis , Neoplasias Colorrectales , Mitofagia , Ubiquitina-Proteína Ligasas , Ubiquitinación , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Humanos , Mitofagia/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Animales , Carcinogénesis/genética , Carcinogénesis/metabolismo , Ratones , Línea Celular Tumoral , Cisteína Endopeptidasas/metabolismo , Cisteína Endopeptidasas/genética , Ratones Desnudos , Regulación Neoplásica de la Expresión Génica
12.
Adv Sci (Weinh) ; 11(18): e2310065, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38447147

RESUMEN

According to the latest evidence, the microbial metabolite Urolithin A (UA), known for its role in promoting cellular health, modulates CD8+ T cell-mediated antitumor activity. However, the direct target protein of UA and its underlying mechanism remains unclear. Here, this research identifies ERK1/2 as the specific target crucial for UA-mediated CD8+ T cell activation. Even at low doses, UA markedly enhances the persistence and effector functions of primary CD8+ cytotoxic T lymphocytes (CTLs) and human chimeric antigen receptor (CAR) T cells both in vitro and in vivo. Mechanistically, UA interacts directly with ERK1/2 kinases, enhancing their activation and subsequently facilitating T cell activation by engaging ULK1. The UA-ERK1/2-ULK1 axis promotes autophagic flux in CD8+ CTLs, enhancing cellular metabolism and maintaining reactive oxygen species (ROS) levels, as evidenced by increased oxygen consumption and extracellular acidification rates. UA-treated CD8+ CTLs also display elevated ATP levels and enhanced spare respiratory capacity. Overall, UA activates ERK1/2, inducing autophagy and metabolic adaptation, showcasing its potential in tumor immunotherapy and interventions for diseases involving ERKs.


Asunto(s)
Homólogo de la Proteína 1 Relacionada con la Autofagia , Linfocitos T CD8-positivos , Cumarinas , Animales , Humanos , Ratones , Autofagia/inmunología , Homólogo de la Proteína 1 Relacionada con la Autofagia/efectos de los fármacos , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Cumarinas/farmacología , Cumarinas/metabolismo , Modelos Animales de Enfermedad , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/inmunología , Ratones Endogámicos C57BL , Neoplasias/inmunología , Neoplasias/terapia , Neoplasias/metabolismo
13.
bioRxiv ; 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38260516

RESUMEN

Ethylene plays its essential roles in plant development, growth, and defense responses by controlling the transcriptional reprogramming, in which EIN2-C-directed regulation of histone acetylation is the first key-step for chromatin to perceive ethylene signaling. However, the histone acetyltransferase in this process remains unknown. Here, we identified histone acetyltransferase HAF2, and mutations in HAF2 confer plants with ethylene insensitivity. Furthermore, we found that HAF2 interacts with EIN2-C in response to ethylene. Biochemical assays demonstrated that the bromodomain of HAF2 binds to H3K14ac and H3K23ac peptides with a distinct affinity for H3K14ac; the HAT domain possesses acetyltransferase catalytic activity for H3K14 and H3K23 acetylation, with a preference for H3K14. ChIP-seq results provide additional evidence supporting the role of HAF2 in regulating H3K14ac and H3K23ac levels in response to ethylene. Finally, our findings revealed that HAF2 co-functions with pyruvate dehydrogenase complex (PDC) to regulate H3K14ac and H3K23ac in response to ethylene in an EIN2 dependent manner. Overall, this research reveals that HAF2 as a histone acetyltransferase that forms a complex with EIN2-C and PDC, collectively governing histone acetylation of H3H14ac and H3K23ac, preferentially for H3K14 in response to ethylene.

14.
Acta Pharmacol Sin ; 45(2): 366-377, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37770579

RESUMEN

Diabetic nephropathy (DN) is characterized by chronic low-grade renal inflammatory responses, which greatly contribute to disease progression. Abnormal glucose metabolism disrupts renal lipid metabolism, leading to lipid accumulation, nephrotoxicity, and subsequent aseptic renal interstitial inflammation. In this study, we investigated the mechanisms underlying the renal inflammation in diabetes, driven by glucose-lipid metabolic rearrangement with a focus on the role of acetyl-CoA synthetase 2 (ACSS2) in lipid accumulation and renal tubular injury. Diabetic models were established in mice by the injection of streptozotocin and in human renal tubular epithelial HK-2 cells cultured under a high glucose (HG, 30 mmol/L) condition. We showed that the expression levels of ACSS2 were significantly increased in renal tubular epithelial cells (RTECs) from the diabetic mice and human diabetic kidney biopsy samples, and ACSS2 was co-localized with the pro-inflammatory cytokine IL-1ß in RTECs. Diabetic ACSS2-deficient mice exhibited reduced renal tubular injury and inflammatory responses. Similarly, ACSS2 knockdown or inhibition of ACSS2 by ACSS2i (10 µmol/L) in HK-2 cells significantly ameliorated HG-induced inflammation, mitochondrial stress, and fatty acid synthesis. Molecular docking revealed that ACSS2 interacted with Sirtuin 1 (SIRT1). In HG-treated HK-2 cells, we demonstrated that ACSS2 suppressed SIRT1 expression and activated fatty acid synthesis by modulating SIRT1-carbohydrate responsive element binding protein (ChREBP) activity, leading to mitochondrial oxidative stress and inflammation. We conclude that ACSS2 promotes mitochondrial oxidative stress and renal tubular inflammation in DN by regulating the SIRT1-ChREBP pathway. This highlights the potential therapeutic value of pharmacological inhibition of ACSS2 for alleviating renal inflammation and dysregulation of fatty acid metabolic homeostasis in DN. Metabolic inflammation in the renal region, driven by lipid metabolism disorder, is a key factor in renal injury in diabetic nephropathy (DN). Acetyl-CoA synthetase 2 (ACSS2) is abundantly expressed in renal tubular epithelial cells (RTECs) and highly upregulated in diabetic kidneys. Deleting ACSS2 reduces renal fatty acid accumulation and markers of renal tubular injury in diabetic mice. We demonstrate that ACSS2 deletion inhibits ChREBP-mediated fatty acid lipogenesis, mitochondrial oxidative stress, and inflammatory response in RTECs, which play a major role in the progression of diabetic renal tubular injury in the kidney. These findings support the potential use of ACSS2 inhibitors in treating patients with DN.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Humanos , Ratones , Animales , Sirtuina 1/metabolismo , Nefropatías Diabéticas/patología , Acetilcoenzima A/metabolismo , Acetilcoenzima A/uso terapéutico , Diabetes Mellitus Experimental/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Riñón/patología , Factores de Transcripción/metabolismo , Metabolismo de los Lípidos , Glucosa/metabolismo , Ácidos Grasos/metabolismo , Inflamación/metabolismo , Ligasas/metabolismo , Lípidos
15.
Proc Natl Acad Sci U S A ; 120(52): e2305684120, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38113258

RESUMEN

Metastasis is a major cause of cancer therapy failure and mortality. However, targeting metastatic seeding and colonization remains a significant challenge. In this study, we identified NSD2, a histone methyltransferase responsible for dimethylating histone 3 at lysine 36, as being overexpressed in metastatic tumors. Our findings suggest that NSD2 overexpression enhances tumor metastasis both in vitro and in vivo. Further analysis revealed that NSD2 promotes tumor metastasis by activating Rac1 signaling. Mechanistically, NSD2 combines with and activates Tiam1 (T lymphoma invasion and metastasis 1) and promotes Rac1 signaling by methylating Tiam1 at K724. In vivo and in vitro studies revealed that Tiam1 K724 methylation could be a predictive factor for cancer prognosis and a potential target for metastasis inhibition. Furthermore, we have developed inhibitory peptide which was proved to inhibit tumor metastasis through blocking the interaction between NSD2 and Tiam1. Our results demonstrate that NSD2-methylated Tiam1 promotes Rac1 signaling and cancer metastasis. These results provide insights into the inhibition of tumor metastasis.


Asunto(s)
Neoplasias del Colon , Factores de Intercambio de Guanina Nucleótido , Humanos , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Transducción de Señal/fisiología , Invasividad Neoplásica/patología , Metilación , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rac1/metabolismo
16.
Adv Sci (Weinh) ; 10(36): e2303484, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37946697

RESUMEN

Ferroptosis, which is caused by iron-dependent accumulation of lipid peroxides, is an emerging form of regulated cell death and is considered a potential target for cancer therapy. However, the regulatory mechanisms underlying ferroptosis remain unclear. This study defines a distinctive role of ferroptosis. Inhibition of CARM1 can increase the sensitivity of tumor cells to ferroptosis inducers in vitro and in vivo. Mechanistically, it is found that ACSL4 is methylated by CARM1 at arginine 339 (R339). Furthermore, ACSL4 R339 methylation promotes RNF25 binding to ACSL4, which contributes to the ubiquitylation of ACSL4. The blockade of CARM1 facilitates ferroptosis and effectively enhances ferroptosis-associated cancer immunotherapy. Overall, this study demonstrates that CARM1 is a critical contributor to ferroptosis resistance and highlights CARM1 as a candidate therapeutic target for improving the effects of ferroptosis-based antitumor therapy.


Asunto(s)
Neoplasias Colorrectales , Ferroptosis , Humanos , Metilación , Proteína-Arginina N-Metiltransferasas/genética , Neoplasias Colorrectales/genética
17.
Ecotoxicol Environ Saf ; 266: 115593, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37856985

RESUMEN

Vermicompost is a promising amendment for immobilization of cadmium (Cd) in soils; however, its effectiveness can be influenced by rhizosphere environment conditions, such as pH and the presence of low-molecular-weight organic acids (LMWOAs). In this study, a batch experiment was conducted to examine the characteristics of Cd adsorption by vermicompost at different pH (pH = 3, 5, and 7) and after the addition of different LMWOAs (oxalic acid; citric acid; malic acid). Furthermore, a series of morphology and structural analyses were conducted to elucidate the mechanisms of observed effects. The results showed that the adsorption capacity of vermicompost for Cd increased as pH increased, and chemisorption dominated the adsorption process. Changes in pH altered adsorption performance by affecting the -OH groups of alcohol/phenol and the -CH2 groups of aliphatics. Further, the addition of oxalic acid promoted Cd adsorption, and the effect was concentration dependent. Modifying the verimicompost surface with more adsorption sites might be the main reason. Conversely, citric acid and malic acid showed the ability to inhibit Cd adsorption by vermicompost. Citric acid caused a blocking effect by covering flocculent substances on the vermicompost surface while reducing surface adsorption sites by dissolving mineral components such as iron oxides. However, the action of malic acid did not appear to be related to changes in morphology or the structure of vermicompost. Overall, the results of this study partially explain the limited effectiveness of Cd immobilization within the rhizosphere by vermicompost, and provide theoretical support for regulating rhizosphere environments to improve the effectiveness of vermicompost immobilization of Cd.


Asunto(s)
Cadmio , Contaminantes del Suelo , Cadmio/análisis , Adsorción , Rizosfera , Suelo/química , Compuestos Orgánicos , Ácido Oxálico/química , Ácido Cítrico/química , Concentración de Iones de Hidrógeno , Contaminantes del Suelo/análisis
18.
Front Pharmacol ; 14: 1203642, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37876731

RESUMEN

Background: HSK21542, a novel selective peripherally-restricted κ-opioid receptor agonist has been proven to be a safe and effective analgesic and antipruritic drug in both in vitro and in vivo studies. We aimed to evaluate its safety, pharmacokinetics and efficacy in hemodialysis patients over a 1-week treatment period, and to establish the optimal dosage for a further 12-week stage 2 trial. Methods: In this multiple ascending dose study, hemodialysis patients were randomly assigned to receive HSK21542 (0.05-0.80 µg/kg), or a placebo three times within 2.5 h at the end of each dialysis session for 1 week. Safety evaluations included reports of treatment-emergent adverse events (TEAEs); pharmacokinetics and efficacy outcomes were also assessed. Results: Among the 44 screened patients, 41 were enrolled and completed the trial. The overall incidence of TEAEs was higher in the HSK21542 group compared to the placebo group, with an incidence of 75.0%, 50.0%, 75.0%, and 88.9% in the range of 0.05-0.80 µg/kg. All TEAEs were grade 1 or 2 in severity. HSK21542 exhibited linear pharmacokinetics characteristics within the dose range 0.05-0.80 µg/kg, without drug accumulation after multiple-doses. Compared to the placebo, a significant decrease of the weekly mean Worst Itching Intensity Numerical Rating Scale was found in the HSK21542-0.30 µg/kg group (p = 0.046), but without significant improvement in the Skindex-16 score. Conclusion: HSK21542 was well tolerated in the dose range 0.05-0.80 µg/kg in hemodialysis patients. HSK21542-0.3 µg/kg exhibited promising efficacy in patients with moderate to severe pruritus and warrants a further Stage 2 trial. Clinical Trial Registration: https://clinicaltrials.gov/, identifier NCT04470154.

19.
BMC Cancer ; 23(1): 1013, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37864137

RESUMEN

BACKGROUND: Recent studies have shown that deficient mismatch repair (dMMR) rectal cancer may be related to treatment resistance, resulting in a worse prognosis than proficient MMR (pMMR) rectal cancer. The purpose of this study was to explore whether surgery plus other treatments (radiotherapy and chemotherapy) can bring more benefits to these patients than surgery alone. METHODS: A retrospective study of 168 patients with rectal adenocarcinoma who underwent total mesorectal excision was conducted using immunohistochemical methods to determine MMR status and a propensity score matching model to minimize potential confounding factors between subgroups of patients with different treatment regimens. Kaplan-Meier analysis, log-rank tests, and Cox regression models were used to assess overall survival (OS) and disease-free survival (DFS) in patient subgroups. RESULTS: Only 6.9% (n = 168) of patients in the total cohort had dMMR rectal adenocarcinoma, and the most common cause of dMMR was a PMS2 deletion (103, 61.3%). The median DFS of the surgery alone group was 45.7 months (IQR, 40.9 to 77.8), and the median DFS of the surgery plus other treatment group was 43.9 months (IQR, 14.2 to 80.1). The surgery alone group was superior to the surgery plus other treatment group (HR, 0.16; 95% CI, 0.07 to 0.38; p = 0.005). There was no significant difference in OS (45.8 (IQR, 41.0 to 79.8) vs. 45.9 (IQR, 38.5 to 80.3)) between the two groups (HR, 0.57; 95% CI, 0.23 to 1.40; p = 0.263). CONCLUSIONS: For patients with locally advanced dMMR rectal adenocarcinoma, compared with surgery alone, surgery plus other treatment options (radiotherapy and chemotherapy) do not grant long-term survival benefits but rather shorten DFS.


Asunto(s)
Adenocarcinoma , Neoplasias del Recto , Humanos , Estadificación de Neoplasias , Reparación de la Incompatibilidad de ADN , Estudios Retrospectivos , Pronóstico , Neoplasias del Recto/genética , Neoplasias del Recto/cirugía , Adenocarcinoma/genética , Adenocarcinoma/cirugía
20.
Life (Basel) ; 13(9)2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37763339

RESUMEN

Although secretory IgA (SIgA) is the dominant antibody in mucosal secretions, the capacity of the SIgA-antigen complex to prime the activation of dendritic cells (DCs) and T cells in the intestinal epithelium is not well understood. To this end, the SIgA-ETEC F5 immune complexes (ICs) were prepared via Ni-NTA pull-down. After injecting the ICs into the intestines of SPF BALB/c mice, most ICs were observed in the Peyer's patch (PP). We established a microfold (M) cell culture model in vitro for transport experiments and the inhibition test. To evaluate the priming effect of mucosal immunity, we employed the DC2.4 stimulation test, T lymphocyte proliferation assays, and cytokine detection assays. We found that the ICs were taken up via clathrin-dependent endocytosis through M cells. The high expression of costimulatory molecules CD86, CD80, and CD40 indicated that the ICs promoted the differentiation and maturation of DC2.4 cells. The stimulation index (SI) in the complex group was significantly higher than in the control group, suggesting that the ICs stimulated the proliferation of primed T cells. The secretion of some cytokines, namely TNF-α, IFN-γ, IL-2, IL-4, IL-5, and IL-6, in spleen cells from the immunized mice was upregulated. These results indicate that ETEC F5 delivery mediated by SIgA in PPs initiates mucosal immune responses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA