Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Arch Microbiol ; 206(5): 227, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38642141

RESUMEN

Bacillus thuringiensis (Bt) and Lysinibacillus sphaericus (Ls) are the most widely used microbial insecticides. Both encounter unfavorable environmental factors and pesticides in the field. Here, the responses of Bt and Ls spores to glutaraldehyde were characterized using Raman spectroscopy and differential interference contrast imaging at the single-cell level. Bt spores were more sensitive to glutaraldehyde than Ls spores under prolonged exposure: <1.0% of Bt spores were viable after 10 min of 0.5% (v/v) glutaraldehyde treatment, compared to ~ 20% of Ls spores. The Raman spectra of glutaraldehyde-treated Bt and Ls spores were almost identical to those of untreated spores; however, the germination process of individual spores was significantly altered. The time to onset of germination, the period of rapid Ca2+-2,6-pyridinedicarboxylic acid (CaDPA) release, and the period of cortex hydrolysis of treated Bt spores were significantly longer than those of untreated spores, with dodecylamine germination being particularly affected. Similarly, the germination of treated Ls spores was significantly prolonged, although the prolongation was less than that of Bt spores. Although the interiors of Bt and Ls spores were undamaged and CaDPA did not leak, proteins and structures involved in spore germination could be severely damaged, resulting in slower and significantly prolonged germination. This study provides insights into the impact of glutaraldehyde on bacterial spores at the single cell level and the variability in spore response to glutaraldehyde across species and populations.


Asunto(s)
Bacillaceae , Bacillus thuringiensis , Insecticidas , Esporas Bacterianas/fisiología , Insecticidas/metabolismo , Glutaral/farmacología , Glutaral/metabolismo , Bacillus subtilis/metabolismo
2.
J Biophotonics ; 17(5): e202300510, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38302112

RESUMEN

Marine bacteria have been considered as important participants in revealing various carbon/sulfur/nitrogen cycles of marine ecosystem. Thus, how to accurately identify rare marine bacteria without a culture process is significant and valuable. In this work, we constructed a single-cell Raman spectra dataset from five living bacteria spores and utilized convolutional neural network to rapidly, accurately, nondestructively identify bacteria spores. The optimal CNN architecture can provide a prediction accuracy of five bacteria spore as high as 94.93% ± 1.78%. To evaluate the classification weight of extracted spectra features, we proposed a novel algorithm by occluding fingerprint Raman bands. Based on the relative classification weight arranged from large to small, four Raman bands located at 1518, 1397, 1666, and 1017 cm-1 mostly contribute to producing such high prediction accuracy. It can be foreseen that, LTRS combined with CNN approach have great potential for identifying marine bacteria, which cannot be cultured under normal condition.


Asunto(s)
Aprendizaje Profundo , Pinzas Ópticas , Análisis de la Célula Individual , Espectrometría Raman , Esporas Bacterianas , Esporas Bacterianas/aislamiento & purificación , Factores de Tiempo , Organismos Acuáticos
3.
Anal Methods ; 16(4): 583-588, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38189485

RESUMEN

Exciting an object with a laser-focus array and randomly interleaving its scattering projection has been proved to be an effective strategy for speeding up Raman imaging. The so-called scattering interleaved Raman imaging (SIRI) method allows Raman hyperspectral imaging with a single snapshot and exhibits excellent reconstruction fidelity and signal-to-noise ratios (SNRs). Here, we show that the performance of SIRI is significantly improved when combined with context-aware excitation. The experiments on micro-plastics demonstrate that the restriction of Raman excitation within a smaller region of interest as guided by bright-field microscopy improves the signal intensity and the SNR, and it is surprising that the spectral resolution is also significantly improved. The context-aware SIRI method is successfully used for imaging of lipid-producing yeast cells, suggesting that it is a promising analytical tool for studying live cells or tissues.

5.
Sci Rep ; 13(1): 17811, 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37857649

RESUMEN

Nowadays environmental issues have been of great concern to the world, among which the problem of global warming caused by greenhouse gas emissions is particularly prominent. All countries in the Kyoto Protocol and the Paris Agreement have committed to control greenhouse gas emissions, and China, as the largest carbon emitter, has assumed a heavier burden. China has been striving to develop low-carbon technologies such as hydrogen, nuclear, wind, and solar energy, but the most attention should be paid to CCUS, which many scholars have high expectations that CCUS can help China reduce emissions to some extent. Therefore, this paper presents a prediction that CCUS can reduce 3.8% of carbon emissions for China in 2040 when CCUS emission reductions increase at a rate of 30%. The power and chemical industries could reduce carbon emissions by 2.3% and 17.3%, respectively.

6.
Photochem Photobiol ; 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37698249

RESUMEN

Nosema bombycis (Nb) is a pathogen causing pebrine in sericulture. Ultraviolet (UV) light exposure is a common physical disinfection method, but the mechanisms underlying UV-based disinfection have only been studied at the population level. In this study, changes in and germination of UV-irradiated spores were observed using Raman tweezers and phase-contrast imaging to evaluate the effects of UV radiation on Nb spores at the single-cell level. We found that irradiation caused the complete leakage of trehalose from individual spores. We also found that more spores leaked as the UV dose increased. There was no significant loss of intracellular biomacromolecules and no marked changes in the peaks associated with protein secondary structures. Low-dose radiation promoted spore germination and high-dose radiation decreased the germination rate, while the germination time did not undergo significant alterations. These results suggest that UV radiation disrupts the permeability of the inner membrane and alters the spore wall, thereby affecting the ability of the spore to sense and respond to extracellular stimuli, which further triggers germination and reduces or stops spore germination. This study provides new insights into the molecular mechanisms underlying conventional disinfection measures on microsporidian spores.

7.
Appl Microbiol Biotechnol ; 107(20): 6325-6338, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37566161

RESUMEN

Streptomyces species are ubiquitous, Gram-positive, spore-forming bacteria with the ability to produce various clinically relevant compounds. The strain 4503 T was isolated from mangrove sediments, showing morphological and chemical properties which were consistent with those of members of the genus Streptomyces. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the isolate was primarily identified as members of the genus Streptomyces, sharing more than 99% sequence identity to Streptomyces yatensis DSM 41771 T, S. antimycoticus NBRC 12839 T, and S. melanosporofaciens NBRC 13061 T. Average nucleotide identities (ANI) and digital DNA-DNA hybridization (dDDH) values between strain 4503 T and its close relatives were all below 95-96% and 75% of the novel species threshold, respectively. Results from phylogenetic, genomic, phenotypic, and chemotaxonomic characteristics analyses confirmed that the isolate represented a novel species of the genus Streptomyces, for which the name Streptomyces niphimycinicus sp. nov. 4503 T (= MCCC 1K04557T = JCM 34996 T) is proposed. The bioassay-guided fractionation of the extract of strain 4503 T resulted in the isolation of a known compound niphimycin C, which showed cytotoxic activity against nasopharyngeal carcinoma (NPC) cell lines TW03 and 5-8F with half maximal inhibitory concentration (IC50) values of 12.24 µg/mL and 9.44 µg/mL, respectively. Further experiments revealed that niphimycin C not only exhibited the capacity of anti-proliferation, anti-metastasis, induction of cell cycle arrest, and apoptosis, but was also able to increase the reactive oxygen species (ROS) production and regulate several signaling pathways in NPC cells. KEY POINTS: • Strain 4503 T was classified as a novel species of Streptomyces. • Niphimycin C correlates with the cytotoxic effect of strain 4503 T against NPC cells. • Niphimycin C induces apoptosis, autophagic flux disruption and cell cycle arrest.


Asunto(s)
Neoplasias Nasofaríngeas , Streptomyces , Humanos , Filogenia , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Carcinoma Nasofaríngeo/tratamiento farmacológico , Microbiología del Suelo , ADN Bacteriano/química , Técnicas de Tipificación Bacteriana , Streptomyces/metabolismo , Neoplasias Nasofaríngeas/tratamiento farmacológico , Ácidos Grasos/metabolismo , Análisis de Secuencia de ADN
8.
Adv Sci (Weinh) ; 10(28): e2303967, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37541665

RESUMEN

Full-Heusler alloys (fHAs) exhibit high mechanical strength with earth-abundant elements, but their metallic properties tend to display small electron diffusion thermopower, limiting potential applications as excellent thermoelectric (TE) materials. Here, it is demonstrated that the Co-based fHAs Co2 XAl (X = Ti, V, Nb) exhibit relatively high thermoelectric performance due to spin and charge coupling. Thermopower contributions from different magnetic mechanisms, including spin fluctuation and magnon drag are extracted. A significant contribution to thermopower from magnetism compared to that from electron diffusion is demonstrated. In Co2 TiAl, the contribution to thermopower from spin fluctuation is higher than that from electron diffusion, resulting in an increment of 280 µW m-1  K-2 in the power factor value. Interestingly, the thermopower contribution from magnon drag can reach up to -47 µV K-1 , which is over 2400% larger than the electron diffusion thermopower. The power factor of Co2 TiAl can reach 4000 µW m-1  K-2 which is comparable to that of conventional semiconducting TE materials. Moreover, the corresponding figure of merit zT can reach ≈0.1 at room temperature, which is significantly larger than that of traditional metallic materials. The work shows a promising unconventional way to create and optimize TE materials by introducing magnetism.

9.
Sci Total Environ ; 882: 163528, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37100144

RESUMEN

Understanding the probability distributions of precipitation is crucial for predicting climatic events and constructing hydraulic facilities. To overcome the inadequacy of precipitation data, regional frequency analysis was commonly used by "trading space for time". However, with the increasing availability of gridded precipitation datasets with high spatial and temporal resolutions, the probability distributions of precipitation for these datasets have been less explored. We used L-moments and goodness-of-fit criteria to identify the probability distributions of annual, seasonal, and monthly precipitation for a 0.5° × 0.5° dataset across the Loess Plateau (LP). We examined five 3-parameter distributions, namely General Extreme Value (GEV), Generalized Logistic (GLO), Generalized Pareto (GPA), Generalized Normal (GNO), and Pearson type III (PE3), and evaluated the accuracy of estimated rainfall using the leave-one-out method. We also presented pixel-wise fit-parameters and quantiles of precipitation as supplements. Our findings indicated that precipitation probability distributions vary by location and time scale, and the fitted probability distribution functions are reliable for estimating precipitation under various return periods. Specifically, for annual precipitation, GLO was prevalent in humid and semi-humid areas, GEV in semi-arid and arid areas, and PE3 in cold-arid areas. For seasonal precipitation, spring precipitation mainly conforms to GLO distribution, summer precipitation around the 400 mm isohyet prevalently follows GEV distribution, autumn precipitation primarily meets GPA and PE3 distributions, and winter precipitation in the northwest, south, and east of the LP mainly conforms to GPA, PE3 and GEV distributions, respectively. Regarding monthly precipitation, the common distribution functions are PE3 and GPA for the less-precipitation months, whereas the distribution functions of precipitation for more-precipitation months vary substantially across different regions of the LP. Our study contributes to a better understanding of precipitation probability distributions in the LP and provides insights for future studies on gridded precipitation datasets using robust statistical methods.

10.
Artículo en Inglés | MEDLINE | ID: mdl-37115596

RESUMEN

Members of the genus Novosphingobium were frequently isolated from polluted environments and possess great bioremediation potential. Here, three species, designated B2637T, B2580T and B1949T, were isolated from mangrove sediments and might represent novel species in the genus Novosphingobium based on a polyphasic taxonomy study. Phylogenomic analysis revealed that strains B2580T, B1949T and B2637T clustered with Novosphingobium naphthalenivorans NBRC 102051T, 'N. profundi' F72 and N. decolorationis 502str22T, respectively. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between isolates and their closely related species were less than 94 and 54 %, respectively, all below the threshold of species discrimination. The sizes of the genomes of isolates B2580T, B2637T and B1949T ranged from 4.4 to 4.6 Mb, containing 63.3-66.4 % G+C content. Analysis of their genomic sequences identified genes related to pesticide degradation, heavy-metal resistance, nitrogen fixation, antibiotic resistance and sulphur metabolism, revealing the biotechnology potential of these isolates. Except for B2637T, B1949T and B2580T were able to grow in the presence of quinalphos. Results from these polyphasic taxonomic analyses support the affiliation of these strains to three novel species within the genus Novosphingobium, for which we propose the name Novosphingobium album sp. nov. B2580T (=KCTC 72967T=MCCC 1K04555T), Novosphingobium organovorum sp. nov. B1949T (=KCTC 92158T=MCCC 1K03763T) and Novosphingobium mangrovi sp. nov. B2637T (KCTC 72969T=MCCC 1K04460T).


Asunto(s)
Ácidos Grasos , Plaguicidas , Ácidos Grasos/química , Compuestos Organofosforados , Análisis de Secuencia de ADN , Filogenia , Composición de Base , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , ARN Ribosómico 16S/genética , Hibridación de Ácido Nucleico , Fosfolípidos
11.
Artículo en Inglés | MEDLINE | ID: mdl-36901087

RESUMEN

Droughts are widespread in China and have brought considerable losses to the economy and society. Droughts are intricate, stochastic processes with multi-attributes (e.g., duration, severity, intensity, and return period). However, most drought assessments tend to focus on univariate drought characteristics, which are inadequate to describe the intrinsic characteristics of droughts due to the existence of correlations between drought attributes. In this study, we employed the standardized precipitation index to identify drought events using China's monthly gridded precipitation dataset from 1961 to 2020. Univariate and copula-based bivariate methods were then used to examine drought duration and severity on 3-, 6-, and 12-month time scales. Finally, we used the hierarchical cluster method to identify drought-prone regions in mainland China at various return periods. Results revealed that time scale played an essential role in the spatial heterogeneity of drought behaviors, such as average characteristics, joint probability, and risk regionalization. The main findings were as follows: (1) 3- and 6-month time scales yielded comparable regional drought features, but not 12-month time scales; (2) higher drought severity was associated with longer drought duration; (3) drought risk was higher in the northern Xinjiang, western Qinghai, southern Tibet, southwest China, and the middle and lower reaches of the Yangtze River, and lower in the southeastern coastal areas of China, the Changbai Mountains, and the Greater Khingan Mountains; (4) mainland China was divided into six subregions according to joint probabilities of drought duration and severity. Our study is expected to contribute to better drought risk assessment in mainland China.


Asunto(s)
Sequías , Ríos , China , Tibet
12.
PLoS One ; 17(9): e0273975, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36048864

RESUMEN

Water shortages have always been the primary bottleneck for the healthy and sustainable development of the ecological environment on the Loess Plateau (LP). Proper water resource management requires knowledge of the spatiotemporal characteristics of precipitation frequency. This paper employed the gridded precipitation dataset obtained from the China Meteorological Data Service Centre to present a spatially explicit characterization of precipitation frequencies in tandem with their return periods on the LP based on the L-moment method. The 60% and 80% of the mean annual precipitation from 1981 to 2010 were synonymous with severe and moderate droughts, respectively. Droughts occurred more frequently in the northwest than in the southeast of the LP. Moreover, the frequencies of moderate drought showed a slight difference throughout the area, while those of severe droughts demonstrated considerable differences between the northwestern arid zone and the southeastern semi-humid zone. The maps associated with various return periods of precipitation deficits can be used to produce drought risk maps together with drought vulnerability maps. These findings could also provide useful information for drought management, water resource management and the development of food security policies.


Asunto(s)
Sequías , Meteorología , China , Agua , Recursos Hídricos
13.
Adv Mater ; 34(14): e2109952, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35106834

RESUMEN

Thermoelectric materials are typically highly degenerate semiconductors, which require high carrier concentration. However, the efficiency of conventional doping by replacing host atoms with alien ones is restricted by solubility limit, and, more unfavorably, such a doping method is likely to cause strong charge-carrier scattering at ambient temperature, leading to deteriorated electrical performance. Here, an unconventional doping strategy is proposed, where a small trace of alien atoms is used to stabilize cation vacancies in Cu3 SbSe4  by compositing with CuAlSe2 , in which the cation vacancies rather than the alien atoms provide a high density of holes. Consequently, the hole concentration enlarges by six times but the carrier mobility is well maintained. As a result, a record-high average power factor of 19 µW cm-1  K-2  in the temperature range of 300-723 K is attained. Finally, with further reduced lattice thermal conductivity, a peak zT value of 1.4 and a record-high average zT value of 0.72 are achieved within the diamond-like compounds. This new doping strategy not only can be applied for boosting the average power factor for thermoelectrics, but more generally can be used to maintain carrier mobility for a variety of semiconductors that need high carrier concentration.

14.
ACS Appl Mater Interfaces ; 13(44): 52775-52782, 2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34702031

RESUMEN

In a SnTe-based thermoelectric material, the naturally high hole concentration caused by cation vacancies and high total thermal conductivity seriously hinder its thermoelectric performance. A recent work shows that alloying SnTe with other compounds from the I-V-VI2 family (I = Ag, Na; V = Sb, Bi; VI = Te) can be considered an effective strategy to boost the figure of merit efficiently via the synergy of manipulating hole concentration and lowering lattice thermal conductivity. Herein, we present a markedly enhanced thermoelectric performance in p-type SnTe through CuPnTe2 (Pn = Sb, Bi) alloying. Moreover, we found that the alloying with both CuSbTe2 and CuBiTe2 can facilitate the valence band convergence of SnTe, but their relative influence is different. Interestingly, compared to CuBiTe2, alloying with CuSbTe2 increases the carrier concentration of SnTe, which suppresses the bipolar effect. Ultimately, under the positive effect of valence band convergence, increased vacancy concentration, and decreased lattice thermal conductivity, compounds with a nominal composition of (SnTe)0.90(CuSbTe2)0.10 attains a peak zT of ∼1.26 at 823 K. In contrast, the thermoelectric performance of (SnTe)1-x(CuBiTe2)x is restricted by the reduced carrier concentration and diminished band gap, showing only a humble maximum zT value of ∼0.91 at 823 K in the sample with a nominal composition of (SnTe)0.96(CuBiTe2)0.04. These results demonstrate the multiple effects on thermoelectric transport during the formation of complex solid solutions.

15.
Analyst ; 145(18): 6032-6037, 2020 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-32743627

RESUMEN

Parallel micro-Raman spectroscopy can significantly expand the analytical capacity of single biological cells. By positioning the Raman spectra of multiple trapped cells on a detector array along the grating dispersion direction, the throughput of single-cell analysis can be improved by orders of magnitude. However, accurate retrieval of the individual spectra from the superimposed spectrum in a single acquisition presents great challenges. In this work, we developed a hierarchical sparsity method under a compressive sensing framework. The method combined a group-selection strategy with in-group sparsity for spectral reconstruction. The performances of the developed method were demonstrated with both simulated and experimental data, and the Raman spectra of the individual trapped cells were retrieved with both high accuracy and low noises; especially, with a group-selection mechanism, the developed method successfully avoided wrong selection of the eigenspectra for spectral reconstruction. The technique is expected to find wide applications in simultaneous monitoring of long biological processes of multiple cells by Raman spectroscopy.


Asunto(s)
Análisis de la Célula Individual , Espectrometría Raman
16.
Sci Total Environ ; 743: 140850, 2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-32758855

RESUMEN

Microplastics (MPs) in aquatic environment usually carry hazardous matters, including toxic heavy metals. Quantification of heavy metals in MPs is crucial for the comprehensive understanding of their ecotoxicology in field environment. However, conventional methods for heavy metal determination either are applicable only to bulk/collective samples or require strict operation environment. Here we demonstrated that laser induced breakdown spectroscopy (LIBS) is a robust tool for the characterization of heavy metals in single MPs. Single-particle LIBS selects individual MPs with specific sizes (down to tens of microns), shapes, and morphologies and analyzes simultaneously multiple elements in milliseconds without sample pretreatment. In addition to the elaborate optical design, we also used stretched thin polyethylene film as a substrate, which significantly suppress the matrix interference to the particles' spectra. The single particle LIBS was demonstrated to be a quantitative analytical method, and was applied to heavy metal analysis of the MPs collected in the seawaters of the Beibu Gulf of China. Positive correlation between the spectral intensities and the local marine pollutions as well as significant heterogeneity in the elemental compositions were observed. The results demonstrate that single-particle LIBS is a promising method for MPs characterization and is suitable for studying pollutant transportation by using MPs as vectors.

17.
ACS Appl Mater Interfaces ; 12(37): 41381-41389, 2020 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-32812735

RESUMEN

GeSe was theoretically predicted to have thermoelectric (TE) performance as high as SnSe. However, the relatively high TE performance was not achieved experimentally in doped GeSe samples with an original orthorhombic structure but observed in Ag(Sb,Bi)(Se,Te)2 alloyed samples that crystalize in either a rhombohedral or cubic structure. Herein, to clarify the crystal structure-dependent properties, the electrical and thermal transport properties of GeSe1-xTex (0 ≤ x ≤ 0.5), where orthorhombic, hexagonal, and rhombohedral phases are stable at room temperature for different Te content, have been studied, without any intentional manipulation on carrier concentration. It is found that the three phases show intrinsically different hole concentrations: ∼1016 cm-3 for the orthorhombic phase but as high as 1021 cm-3 for the hexagonal and rhombohedral phases. Ge-rich status in the orthorhombic phase and Ge-poor status in hexagonal and rhombohedral phases may be responsible for the huge difference in hole concentrations. The rhombohedral phase shows a much higher Seebeck coefficient than the hexagonal phase with similar hole concentration, indicating that the profile of valance band maximum for the rhombohedral structure is more favorable for high TE performance than the hexagonal phase in GeSe1-xTex. The highest zT of 0.69 has been obtained in GeSe0.55Te0.45 at 778 K, at which temperature the rhombohedral phase has already transformed to a cubic phase; however, a zT value of 1.74 at 628 K is predicted by the quality factor analysis for rhombohedral GeSe0.55Te0.45 if optimum hole concentration can be achieved.

18.
Anal Chim Acta ; 1095: 14-19, 2020 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-31864615

RESUMEN

Multi-elemental analysis of particulate matters is highly desirable for the identification of their emission sources. However, the traditional techniques for single particle analysis usually require time-consuming sample preparation procedures. We report here a system that combines bright-field microscopy with laser induced breakdown spectroscopy (LIBS), allowing rapid and multi-elemental analysis of single particles. The improved throughput of the system was benefited from the use of ultra-thin polyethylene films for particle immobilization such that their spectra were collected successively. The simple composition of the films avoided their interferences in the particles' LIBS spectra. Moreover, the small thickness of the films allowed their rapid vaporization during laser ablation such that the plasma emissions from the particles were not quenched by their substrates. The performances of the system were demonstrated by studying the heterogeneity in particles' compositions and discriminating dust particles with very similar chemicals, suggesting that it is a promising tool for environmental risk assessment.

19.
Anal Chem ; 92(1): 1326-1332, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31793766

RESUMEN

Confocal Raman microscopy is a powerful method for nondestructive and noninvasive detection of chemicals with high spatial resolution, but its long acquisition time hinders its applications in large-scale monitoring of fast dynamics. Here, we report the development of a compressive sensing technique for single-acquisition multifocal Raman spectroscopy, which is capable of improving the speed of conventional confocal Raman spectroscopy by 2-3 orders of magnitude. A sample is excited with a 2-D multifocus pattern, and the Raman scatterings from the multiple foci were projected onto the spectrometer's entrance in a 2-D array. The superimposed spectra within each row of the array were processed with an algorithm such that the spectra from the individual foci were retrieved in a single acquisition and with reduced noise. The performances of the developed technique were demonstrated by parallel Raman spectroscopy of multiple individual particles as well as by single-acquisition confocal Raman imaging of a large scale with high spatial resolution when combined with spatially sparse sampling. The technique is expected to find wide applications in investigating fast dynamics in large-scale biological systems.

20.
Case Rep Obstet Gynecol ; 2019: 1601368, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31781441

RESUMEN

Uterine torsion of a nongravid uterus is rare, and proper diagnosis is challenging. Herein, we report a case of torsion of a large myomatous uterus in an 86-year-old woman who was presented with progressive renal failure and paralytic ileus. She was presented with abdominal discomfort, loss of appetite, and oliguria. A large myomatous uterus with broad calcification was identified when she underwent surgery to repair an umbilical hernia one year before the symptoms developed. Computed tomography revealed that one year later, the myomatous uterus significantly increased in size and the calcified lesion of the fibroid was largely displaced. She was also presented with paralytic ileus, and her general condition progressively worsened. Her serum creatinine levels were increased (3.5 mg/dL) and hemoglobin levels were low (8.5 g/dL). Emergency laparotomy revealed that the uterus was rotated 360 degrees clockwise at the level of the isthmus. The uterus was discolored, appearing dark red, and accompanied by broad congestion, and the cervix was elongated. The patient's renal function and ileus recovered after a hysterectomy. In conclusion, torsion of a large myomatous uterus could become life-threatening in an oldest-old woman, and early release of the torsion is necessary to avoid serious complications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...