Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38498783

RESUMEN

PURPOSE: To explore the contribution of paired-related homeobox 1-positive cells to the implant-induced osseointegration process in adult alveolar bone and the potential underlying mechanisms. MATERIALS AND METHODS: Cre recombinase-induced lineage tracing and cell ablation were conducted in a murine dental implant model. Scratch and transwell assays were used to assess MC3T3-E1 cell migration after paired-related homeobox 1 overexpression. Single-cell RNA sequencing were applied to identify potential genes involved in pairedrelated homeobox 1-positive cells-driven osteogenesis. RESULTS: Paired-related homeobox 1- positive cells were observed to accumulate in the peri-implant area in a time-dependent manner. The number of these cells were found to reach its maximum on day 14. Osseointegration in mice were noticeably impaired after ablation of paired-related homeobox 1-positive cells. Further, it was discovered that paired-related homeobox 1 promotes MC3T3- E1 cell migration, a process which is indispensable for sound healing of peri-implant tissue. Finally, Semaphorin 3C was detected exclusively and abundantly expressed by paired-related homeobox 1-positive cells. Knockdown of semaphorin 3C in paired-related homeobox 1- positive cells significantly weakened their osteogenic potential. CONCLUSION: Our data suggest that paired-related homeobox 1-positive cells contribute to the osseointegration process under stress stimulation and semaphorin 3C may play a critical role in paired-related homeobox 1- positive cell-driven osteogenesis. Paired-related homeobox 1 could significantly promote MC3T3-E1 cell migration.

2.
J Bone Miner Res ; 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38477792

RESUMEN

The impaired bone healing in tooth extraction sockets due to periodontitis presents a major obstacle to restoring oral health. The mechanisms regulating osteogenic capacity of jawbone derived stromal cells in periodontitis microenvironment remain elusive. Leptin receptor (LepR) expressing stromal cells, which largely overlap with Cxcl12-abundant reticular (CAR) cells in bone tissue, rapidly proliferate and differentiate into bone-forming cells during extraction socket healing to support alveolar bone repair. In this study, we identify that CCRL2 is significantly expressed and inhibits osteogenesis in LepR+/CAR cells of alveolar bones with periodontitis. Ccrl2-knockout mice exhibit significant improvements in bone healing in extraction sockets with periodontitis. Specifically, the binding of CCRL2 to SFRP1 on the surface of LepR+/CAR cells can amplify the suppressive effect of SFRP1 on Wnt signaling under inflammation, thus hindering the osteogenic differentiation of LepR+/CAR cells and resulting in poor bone healing in extraction sockets with periodontitis. Together, we clarify that the CCRL2 receptor of LepR+/CAR cells can respond to periodontitis and crosstalk with Wnt signaling to deteriorate extraction socket healing.


The impaired bone healing in tooth extraction sockets due to periodontitis presents a major obstacle to restoring oral health. Alterations in cellular activity of LepR+/CAR cells, an essential stromal cell population for extraction socket healing, in periodontitis microenvironment have yet to be determined. In this study, we identify that CCRL2, as a potent agent of inflammation-bone crosstalk, is significantly expressed and inhibits osteogenesis in LepR+/CAR cells of alveolar bones with periodontitis. Specifically, the binding of CCRL2 to SFRP1 on the surface of LepR+/CAR cells can amplify the suppressive effect of SFRP1 on the Wnt/ß-catenin signaling under inflammation, thus hindering the osteogenic differentiation of LepR+/CAR cells and resulting in poor bone healing in tooth extraction sockets with periodontitis.

3.
Orthop Surg ; 16(5): 1215-1229, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38520122

RESUMEN

OBJECTIVE: The biomechanical characteristics of proximal femoral trabeculae are closely related to the occurrence and treatment of proximal femoral fractures. Therefore, it is of great significance to study its biomechanical effects of cancellous bone in the proximal femur. This study examines the biomechanical effects of the cancellous bone in the proximal femur using a controlled variable method, which provide a foundation for further research into the mechanical properties of the proximal femur. METHODS: Seventeen proximal femoral specimens were selected to scan by quantitative computed tomography (QCT), and the gray values of nine regions were measure to evaluated bone mineral density (BMD) using Mimics software. Then, an intact femur was fixed simulating unilateral standing position. Vertical compression experiments were then performed again after removing cancellous bone in the femoral head, femoral neck, and intertrochanteric region, and data were recorded. According to the controlled variable method, the femoral head, femoral neck, and intertrochanteric trabeculae were sequentially removed based on the axial loading of the intact femur, and the displacement and strain changes of the femur samples under axial loading were recorded. Gom software was used to measure and record displacement and strain maps of the femoral surface. RESULTS: There was a statistically significant difference in anteroposterior displacement of cancellous bone destruction in the proximal femur (p < 0.001). Proximal femoral bone mass explained 77.5% of the strength variation, in addition proximal femoral strength was mainly affected by bone mass at the level of the upper outer, lower inner, lower greater trochanter, and lesser trochanter of the femoral head. The normal stress conduction of the proximal femur was destroyed after removing cancellous bone, the stress was concentrated in the femoral head and lateral femoral neck, and the femoral head showed a tendency to subside after destroying cancellous bone. CONCLUSION: The trabecular removal significantly altered the strain distribution and biomechanical strength of the proximal femur, demonstrating an important role in supporting and transforming bending moment under the vertical load. In addition, the strength of the proximal femur mainly depends on the bone density of the femoral head and intertrochanteric region.


Asunto(s)
Densidad Ósea , Hueso Esponjoso , Tomografía Computarizada por Rayos X , Humanos , Fenómenos Biomecánicos , Hueso Esponjoso/diagnóstico por imagen , Hueso Esponjoso/fisiología , Femenino , Masculino , Fémur/fisiología , Fémur/diagnóstico por imagen , Anciano , Persona de Mediana Edad , Cabeza Femoral/diagnóstico por imagen , Cabeza Femoral/fisiología , Cadáver
4.
Bone ; 180: 116990, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38141748

RESUMEN

Numerous studies have demonstrated that estrogen deficiency inhibit the proliferation and differentiation of pre-osteoblasts in skeleton by affecting osteogenic signaling, lead to decreased bone mass and impaired regeneration. To explore the mechanisms maintaining bone regeneration under estrogen deficiency, we randomly selected 1102 clinical cases, in which female patients aged between 18 and 75 have underwent tooth extraction in Stomatological Hospital of Tongji University, there is little difference in the healing effect of extraction defects, suggesting that to some extent, the regeneration of jawbone is insensitive to the decreased estrogen level. To illuminate the mechanisms promoting jawbone regeneration under estrogen deficiency, a tooth extraction defect model was established in the maxilla of female rats who underwent ovariectomy (OVX) or sham surgery, and jawbone marrow stromal cells (BMSCs) were isolated for single-cell sequencing. Further quantitative PCR, RNA interference, alizarin red staining, immunohistochemistry and western blotting experiments demonstrated that in the context of ovariectomy, maxillary defects promoted G protein-coupled estrogen receptor 1 (Gper1) expression, stimulate downstream cAMP/PKA/pCREB signaling, and facilitate cell proliferation, and thus provided sufficient progenitors for osteogenesis and enhanced the regeneration capacity of the jawbone. Correspondingly, the heterozygous deletion of the Gper1 gene attenuated the phosphorylation of CREB, led to decreased cell proliferation, and impaired the restoration of maxillary defects. This study demonstrates the importance of Gper1 in maintaining jawbone regeneration, especially in the context of estrogen deficiency.


Asunto(s)
Regeneración Ósea , Osteogénesis , Humanos , Ratas , Femenino , Animales , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , Diferenciación Celular , Maxilares , Estrógenos
5.
Front Bioeng Biotechnol ; 11: 1297507, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38116197

RESUMEN

Introduction: Currently, cannulated screws (CSs) and dynamic hip screws (DHSs) are widely used for the treatment of femoral neck fractures, but the postoperative complications associated with these internal fixations remain high. In response to this challenge, our team proposes a new approach involving triangular-supported fixation and the development of the proximal femoral bionic nail (PFBN). The primary objective of this study is to investigate the biomechanical differences among CSs, DHSs, and the PFBN in their capacity to stabilize femoral neck fractures. Methods: A normal proximal femur model was constructed according to the CT data of a normal healthy adult. A femoral neck fracture model was constructed and fixed with CSs, DHSs, and the PFBN to simulate the fracture fixation model. Abaqus 6.14 software was used to compare the biomechanical characters of the three fracture fixation models. Results: The maximum stresses and displacements of the normal proximal femur were 45.35 MPa and 2.83 mm, respectively. Under axial loading, the PFBN was more effective than DHSs and CSs in improving the stress concentration of the internal fixation and reducing the peak values of von Mises stress, maximum principal stress, and minimum principal stress. The PFBN fixation model exhibits superior overall and fracture section stability in comparison to both the DHS fixation model and the CS fixation model under axial loading. Notably, the maximum stress and peak displacement of the PFBN and bone were lower than those of the DHS and CS fixation models under bending and torsional loading. Conclusion: The PFBN shows considerable improvement in reducing stress concentration, propagating stress, and enhancing the overall stability in the femoral neck fracture fixation model compared to DHSs and CSs. These enhancements more closely correspond to the tissue structure and biomechanical characteristics of the proximal femur, demonstrating that the PFBN has great potential for therapeutic purposes in treating femoral neck fractures.

6.
Orthop Surg ; 15(12): 3279-3287, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37853985

RESUMEN

OBJECTIVE: The Ward triangle is an important area used clinically to diagnose and assess osteoporosis and its fracture risk in the proximal femur. The main objective of this study was to investigate the rules of development and maturation of the trabeculae of Ward's triangle to provide a basis for the prevention and treatment proximal femur fracture. METHODS: From January 2018 to December 2019, individuals from 4 months to 19 years old who underwent hip growth and development assessments at the Third Hospital of Hebei Medical University were selected retrospectively. The outpatient electronic medical record system was used to collect information such as age, gender, imaging images, and clinical diagnosis. The development score and maturity characteristics of the trabecular bone were analyzed using hip radiograph data. Correlation analysis was performed to identify the relationship among age, neck-shaft angle and development and maturity score of the trabecular bone. RESULTS: A total of 941 patients were enrolled in this study, including 539 males and 402 females. Primary compression trabeculae were all present at 1 year of age and matured at 7 years of age and older; primary tension trabeculae were all present at 4 years of age and matured at 18 years of age. Secondary compression trabeculae were present at 4 years of age and matured at 18 years of age. In addition, the neck-shaft angle progressively decreases from 4 months to 14 years of age but barely changes between 15 and 19 years of age. CONCLUSION: In short, the development and maturation of the trabeculae in the ward' triangle followed a specific temporal pattern that was related to the neck-shaft angle. Therefore, these findings can help us understand structure and mechanical characteristics of proximal femoral trabeculae, and improve our understanding of the mechanism and treatment of proximal femoral fractures.


Asunto(s)
Osteoporosis , Fracturas Femorales Proximales , Masculino , Femenino , Humanos , Adolescente , Adulto Joven , Adulto , Densidad Ósea , Hueso Esponjoso , Estudios Retrospectivos , Fémur/diagnóstico por imagen
7.
Int J Oral Maxillofac Implants ; 38(4): 757-767, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37669528

RESUMEN

Purpose: To determine the optimal implant diameter under limited bone width by comparing the effects of implants with different diameters on implant stability, peri-implant bone stability, and osseointegration. In addition, to evaluate the reliability of resonance frequency analysis (RFA) in detecting osseointegration and marginal bone level (MBL). Materials and Methods: Mandibular premolars and first molars of seven beagle dogs were extracted. After 8 weeks, their mandibular models and radiographic information were collected to fabricate implant templates. Implant sites were randomly divided into three groups according to diameter: Ø3.3, Ø4.1, and Ø4.8 mm. Implant stability quotient (ISQ) measurement and radiographic evaluation were performed after surgery (baseline) and at 4, 8, and 12 weeks. Three dogs were euthanized at 4 weeks to observe osteogenesis and implant-tissue interface biology. Four dogs were euthanized at 12 weeks to observe osseointegration. Hard tissue sections were prepared to analyze osteogenesis (fluorescence double labeling) and osseointegration (methylene blue-acid fuchsin staining). Results: At baseline and at 4, 8, and 12 weeks, the ISQ values of Ø4.1- and Ø4.8-mm implants did not differ (P > .05), but both had higher values than the Ø3.3-mm implants (P < .05). The mean marginal bone resorption (MBR) associated with Ø3.3-, Ø4.1-, and Ø4.8-mm implants was 0.65 ± 0.58 mm, 0.37 ± 0.28 mm, and 0.73 ± 0.37 mm, respectively. The buccal MBR of Ø4.8-mm implants was significantly higher than that of Ø4.1-mm implants (P < .05). The bone-to-implant contact (BIC) percentage at 12 weeks did not differ for any group (P > .05). The correlation coefficients between the ISQ and MBL of the Ø3.3-, Ø4.1-, and Ø4.8-mm implants were -0.84 (P < .01), -0.90 (P < .001), and -0.93 (P < .001), respectively, while that between the ISQ and BIC was 0.15 (P > .05). Conclusions: During the early healing stage, the performance of Ø4.1- and Ø4.8-mm implants in terms of implant stability was better than that of Ø3.3-mm implants. Implant diameter may not influence BIC percentage. RFA can be used to evaluate implant stability and MBL but is not suitable to assess the degree of osseointegration.


Asunto(s)
Resorción Ósea , Implantación Dental Endoósea , Implantes Dentales , Animales , Perros , Implantación Dental Endoósea/instrumentación , Mandíbula/cirugía , Oseointegración , Reproducibilidad de los Resultados , Análisis de Frecuencia de Resonancia
8.
Front Bioeng Biotechnol ; 11: 1210637, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37600300

RESUMEN

In the past 4 decades, many articles have reported on the effects of the piezoelectric effect on bone formation and the research progress of piezoelectric biomaterials in orthopedics. The purpose of this study is to comprehensively evaluate all existing research and latest developments in the field of bone piezoelectricity, and to explore potential research directions in this area. To assess the overall trend in this field over the past 40 years, this study comprehensively collected literature reviews in this field using a literature retrieval program, applied bibliometric methods and visual analysis using CiteSpace and R language, and identified and investigated publications based on publication year (1984-2022), type of literature, language, country, institution, author, journal, keywords, and citation counts. The results show that the most productive countries in this field are China, the United States, and Italy. The journal with the most publications in the field of bone piezoelectricity is the International Journal of Oral & Maxillofacial Implants, followed by Implant Dentistry. The most productive authors are Lanceros-Méndez S, followed by Sohn D.S. Further research on the results obtained leads to the conclusion that the research direction of this field mainly includes piezoelectric surgery, piezoelectric bone tissue engineering scaffold, manufacturing artificial cochleae for hearing loss patients, among which the piezoelectric bone tissue engineering scaffold is the main research direction in this field. The piezoelectric materials involved in this direction mainly include polyhydroxybutyrate valerate, PVDF, and BaTiO3.

9.
Int Endod J ; 56(11): 1385-1398, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37632694

RESUMEN

AIM: The primary goal of this study was to investigate the potential effects of A5G81 in inducing reparative dentine (RD) formation both in vitro and in vivo. METHODOLOGY: Cell adhesion was observed by crystal violet staining and quantified by Sodium Dodecyl Sulphate (SDS) extraction. Cell proliferation was investigated using Cell Counting Kit-8 (CCK-8) assay. Spreading of cytoskeleton was visualized using immunofluorescence staining. Protein expression level of Akt signalling pathway was compared in a human Akt pathway phosphorylation array. Genes that were up or downregulated by A5G81 were identified by RNA sequencing. The mRNA expression of odontoblastic markers was detected by quantitative real-time polymerase chain reaction (qPCR). Moreover, mineralization of human dental pulp cells (hDPCs) was visualized by alizarin red staining and quantified using cetylpyridinium chloride (CPC). A direct pulp-capping model was established in SD rats and the RD formation at 2 weeks after operation was observed using HE staining. RESULTS: A5G81 (optimal coating concentration: 0.5 mg/mL) promoted hDPCs adhesion and proliferation to a level that was similar to Type I collagen (COL-1). Meanwhile, A5G81 activated Akt signalling pathway, albeit to a lesser extent than COL-1. An inhibition test indicated that A5G81 induced hDPCs adhesion by activating PI3K pathway. A5G81 induced the expression of ECM remodelling genes and odontoblastic genes, which were demonstrated by RNA-seq and qPCR, respectively. In addition, A5G81 efficiently accelerated the mineralization of hDPCs in both immobilized and soluble forms, a property that makes it more applicable in dental clinic. Finally, the pulp-capping study in rats suggested that use of A5G81 could successfully induce the formation of RD within 2 weeks. CONCLUSION: Coating of A5G81 to non-tissue culture-treated polystyrene facilitates spreading, proliferation and differentiation of hDPCs, resulting in rapid RD formation in artificially exposed pulp.

10.
J Inflamm Res ; 16: 3143-3156, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37520667

RESUMEN

Background: To analyze the fibroblasts subtypes in the gingival tissues of healthy controls, gingivitis and periodontitis patients, as well as the effects of interaction between subtypes on alveolar bone destruction. Methods: Gingival tissues were divided into three groups according to clinical and radiographic examination, and the immunostaining of EDA+FN was assessed. Fibroblasts from gingiva developed colony formation units (CFUs) and induced Trap+MNCs. The expression of osteoclastogenesis-related genes was assessed by real-time PCR. Variances in the gene profiles of CFUs were identified by principal component analysis, and cluster analysis divided CFUs into subtypes. The induction of Trap+MNCs and gene expression were compared among individual or cocultured subtypes. The fibroblast subtypes exerted critical effect on Trap+MNCs formation were selected and edited by CRISPR/Cas to investigate the influence on osteoclastogenesis in the periodontitis in mice. Results: Most periodontitis samples exhibited intensive EDA+FN staining (P < 0.05), and these fibroblasts also induced most Trap+MNCs among three groups; consistently, fibroblasts from periodontitis highly expressed genes facilitating osteoclastogenesis. According to gene profiles and osteoclastogenic induction, four clusters of CFUs were identified. The proportion of clusters was significantly different (P < 0.05) among three groups, and their interaction influenced osteoclastogenic induction. Although Cluster 4 induced less osteoclasts, it enhanced the effects of Clusters 1 and 3 on Trap+MNCs formation (P < 0.05). EDA knockout in Cluster 4 abrogated this promotion (P < 0.05), and decreased osteoclasts and alveolar bone destruction in experimental periodontitis (P < 0.05). Conclusion: Heterogeneous fibroblast subtypes affect the switch or development of periodontitis. A subtype (Cluster 4) played important role during alveolar bone destruction, by regulating other subtypes via EDA+FN paracrine.

11.
Injury ; 2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36922271

RESUMEN

Trabecular bone plays an important role in the load-bearing capacity of the femur. Understanding the structural characteristics, biomechanics, and mechanical conduction of the trabecular bone is of great value in studying the mechanism of fractures and formulating surgical plans. The past decade has witnessed unprecedented progress in imaging, biomechanics and finite element analysis techniques, translating into a better understanding of trabecular bone. This article reviews the research progress achieved over the years regarding femoral trabecular bone, especially on factors influencing the strength of the proximal femoral cancellous bone and cancellous bone microfractures and provides a comprehensive overview of the latest findings on proximal femoral trabecular bone and their clinical significance.

12.
Am J Pathol ; 193(2): 213-232, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36410421

RESUMEN

This study explored the role of transient receptor potential channel melastatin 2 (TRPM2)-mediated activation of NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome in osteogenesis during healing of tooth extraction sockets. Tooth extraction socket tissue samples were collected from patients with or without periodontitis. In a TRPM2 knockout mouse model of socket healing, mice with or without periodontitis and their wild-type littermates were used for comparing the socket healing phenotypes. Micro-computed tomography imaging, three-dimensional reconstruction of the sockets, and hematoxylin and eosin staining for histopathologic analysis were performed. Immunofluorescence, immunohistochemistry, and Western blot analysis were used for evaluation of protein expression; the mRNA levels were evaluated by quantitative RT-PCR. Osteogenic, chondrogenic, and adipogenic differentiation potential of human bone marrow mesenchymal stem cells (BMMSCs) was evaluated. Calcium deposition was evaluated using Alizarin Red S staining. NLRP3 and CASP1 were up-regulated in tooth sockets of periodontitis patients. NLRP3 knockdown promoted the osteogenic differentiation of maxillary BMMSCs under inflammatory conditions. TRPM2 was up-regulated in the tooth extraction socket tissue of periodontitis. Inhibiting TRPM2 expression mitigated the NLRP3 inflammasome and its deleterious effect on osteogenesis. Activation of the TRPM2 ion channel regulated osteogenesis of BMMSCs under inflammatory conditions via Ca2+ influx, the mitochondrial dynamics, and pyroptosis. Targeting the TRPM2/Ca2+/NLRP3 axis could be beneficial in the healing process of the tooth extraction sockets of patients with periodontitis.


Asunto(s)
Periodontitis , Canales Catiónicos TRPM , Canales de Potencial de Receptor Transitorio , Humanos , Ratones , Animales , Inflamasomas/metabolismo , Osteogénesis/fisiología , Alveolo Dental/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Canales Catiónicos TRPM/genética , Canales Catiónicos TRPM/metabolismo , Microtomografía por Rayos X , Ratones Endogámicos NOD , Extracción Dental
13.
Clin Oral Implants Res ; 34(1): 42-55, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36310529

RESUMEN

OBJECTIVES: To investigate and compare the influence of deproteinized bovine bone mineral (DBBM) combined with autologous cortical (CorBC) or cancellous bone chips (CanBC) as bone grafts on guided bone regeneration (GBR) in vivo and in vitro. MATERIALS AND METHODS: Defects were created in the mandibular buccal alveolar ridges in dogs and randomly filled with 3 groups of bone grafts: DBBM, DBBM + CorBC, or DBBM + CanBC. Osteogenesis was evaluated by sequential fluorescent labeling and histological analysis. Moreover, rat bilateral calvaria defects were randomly grafted with DBBM, DBBM + CorBC, or DBBM + CanBC. A blank group was included as control. Defect healing was assessed by histological staining, micro-CT, and quantitative polymerase chain reaction. In vitro migration, proliferation, and osteogenic differentiation assays were performed by stimulating rat bone marrow mesenchymal stem cells (rBMSCs) with cortical (CorBCM) or cancellous bone conditioned medium (CanBCM) to unveil the cellular mechanism. RESULTS: In the canine model, the augmented sites of DBBM + CanBC exhibited higher mineralized tissue proportion than the other two groups (DBBM: 0.61 ± 0.03 versus DBBM + CorBC: 0.69 ± 0.07 versus DBBM + CanBC: 0.86 ± 0.06; p < .05). In the rat model, the BV/TV value of DBBM + CanBC (0.51 ± 0.01) was higher than those of DBBM + CorBC (0.41 ± 0.02), DBBM (0.31 ± 0.01), and Control (0.10 ± 0.01; p < .01). Further radiological, histological and transcriptional results showed similar trends. In vitro experiments revealed that CorBCM and especially CanBCM could enhance rBMSCs migration, proliferation, and osteogenic differentiation. CONCLUSION: In vivo and in vitro experiments verified favorable synergistic effect of mixing autologous bone chips with DBBM on osteogenesis. Furthermore, CanBC presented more powerful osteogenic effect than CorBC.


Asunto(s)
Sustitutos de Huesos , Osteogénesis , Perros , Animales , Bovinos , Ratas , Hueso Esponjoso , Cicatrización de Heridas , Mandíbula/cirugía , Regeneración Ósea , Minerales
14.
Int Immunopharmacol ; 114: 109535, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36527880

RESUMEN

Programmed death molecule ligand 1 (PD-L1) expression in urothelial carcinoma is a predictive marker used to guide immunotherapy. As expression of PD-L1 may be heterogeneous in the tumor tissue space, it cannot be accurately determined by immunohistochemical analysis. In this study, we examined PD-L1 protein levels in preoperative urine samples from bladder cancer patients, evaluated the prevalence of PD-L1 in urine, examined the usefulness of urine as a surrogate for PD-L1 expression in tumors, and compared PD-L1 expression in postoperative pathological sections. We found that PD-L1 in urine and tumor tissue correlated well and that it may be able to some extent serve as a surrogate for tissues in bladder cancer and thus predict risk of recurrence in muscle-invasive bladder cancer (MIBC) patients. Our findings reveal the clinical relevance of urine PD-L1 as a noninvasive prognostic indicator for immunotherapy and offer clinical translational suggestions for eventual development of a prognostic model for immunotherapy for bladder cancer.


Asunto(s)
Carcinoma de Células Transicionales , Neoplasias de la Vejiga Urinaria , Humanos , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Carcinoma de Células Transicionales/tratamiento farmacológico , Antígeno B7-H1/metabolismo , Pronóstico , Músculos/química , Músculos/metabolismo , Músculos/patología
15.
Injury ; 54 Suppl 3: S35-S38, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-35144806

RESUMEN

Clinical research runs through the entire progress of the science and technology which has been currently and previously applied to the medical field. It has gradually developed into a standardized procedure and played an important role in understanding the etiology and characteristics of diseases. Clinical research assess the effectiveness and safety of new/improved diagnostic or therapeutic technologies, implants, instruments, or drug applications, to discover new data and improve potential deficiencies in previous medical knowledge.

16.
Biomater Transl ; 4(3): 131-141, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38283088

RESUMEN

In recent years, perovskite has received increasing attention in the medical field. However, there has been a lack of related bibliometric analysis in this research field. This study aims to analyse the research status and hot topics of perovskite in the medical field from a bibliometric perspective and explore the research direction of perovskite. This study collected 1852 records of perovskite research in the medical field from 1983 to 2022 in the Web of Science (WOS) database. The country, institution, journal, cited references, and keywords were analysed using CiteSpace, VOS viewer, and Bibliometrix software. The number of articles related to perovskite research in the medical field has been increasing every year. China and USA have published the most papers and are the main forces in this research field. The University of London Imperial College of Science, Technology, and Medicine is the most active institution and has contributed the most publications. ACS Applied Materials & Interfaces is the most prolific journal in this field. "Medical electronic devices", "X-rays", and "piezoelectric materials" are the most researched directions of perovskite in the medical field. "Performance", "perovskite", and "solar cells" are the most frequently used keywords in this field. Advanced Materials is the most relevant and academically influential journal for perovskite research. Halide perovskites have been a hot topic in this field in recent years and will be a future research trend. X-ray, electronic medical equipment, and medical stents are the main research directions.

17.
Front Pharmacol ; 14: 1276849, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38239192

RESUMEN

Cartilage, a type of connective tissue, plays a crucial role in supporting and cushioning the body, and damages or diseases affecting cartilage may result in pain and impaired joint function. In this regard, biocompatible materials are used in cartilage tissue healing and regeneration as scaffolds for new tissue growth, barriers to prevent infection and reduce inflammation, and deliver drugs or growth factors to the injury site. In this article, we perform a comprehensive bibliometric analysis of literature on cartilage tissue healing and regeneration based on biocompatible materials, including an overview of current research, identifying the most influential articles and authors, discussing prevailing topics and trends in this field, and summarizing future research directions.

18.
Cell Res ; 32(9): 814-830, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35821090

RESUMEN

Bone regeneration originates from proliferation and differentiation of osteoprogenitors via either endochondral or intramembranous ossification; and the regeneration capacities decline with age and estrogen loss. Maxillary sinus floor lifting (MSFL) is a commonly used surgical procedure for guiding bone regeneration in maxilla. Radiographic analysis of 1210 clinical cases of maxilla bone regeneration after MSFL revealed that the intrasinus osteogenic efficacy was independent of age and gender, however; and this might be related to the Schneiderian membrane that lines the sinus cavity. In view of the particularity of this biological process, our present study aimed to elucidate the underlying mechanism of MSFL-induced bone regeneration. We first established a murine model to simulate the clinical MSFL. By single-cell RNA-sequencing and flow cytometry-based bulk RNA-sequencing, we identified a novel Krt14+Ctsk+ subset of cells that display both epithelial and mesenchymal properties and the transcriptomic feature of osteoprogenitors. Dual recombinases-mediated lineage tracing and loss-of-function analyses showed that these Krt14+Ctsk+ progenitors contribute to both MSFL-induced osteogenesis and physiological bone homeostasis by differentiating into Krt14-Ctsk+ descendants which show robust osteogenic capacity. In addition, we detected a similar population of Krt14+Ctsk+ cells in human samples of Schneiderian membrane, which show a highly similar osteogenic potential and transcriptomic feature to the corresponding cells in mice. The identification of this Krt14+Ctsk+ population, featured by osteoprogenitor characteristics and dual epithelial-mesenchymal properties, provides new insight into the understanding of bone regeneration and may open more possibilities for clinical applications.


Asunto(s)
Seno Maxilar , Elevación del Piso del Seno Maxilar , Animales , Regeneración Ósea , Diferenciación Celular , Homeostasis , Humanos , Ratones , Osteogénesis/fisiología , ARN , Elevación del Piso del Seno Maxilar/métodos
19.
Adv Healthc Mater ; 11(19): e2201248, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35842766

RESUMEN

Calcium phosphate (CaP) is frequently used as coating for bone implants to promote osseointegration. However, commercial CaP coatings via plasma spraying display similar microstructures, and thus fail to provide specific implants according to different surgical conditions or skeletal bone sites. Herein, inspired by the formation of natural biominerals with various morphologies mediated by amorphous precursors, CaP coatings with tunable microstructures mediated by an amorphous metastable phase are fabricated. The microstructures of the coatings are precisely controlled by both polyaspartic acid and Mg2+ . The cell biological behaviors, including alkaline phosphatase activity, mineralization, and osteogenesis-related genes expression, on the CaP coatings with different microstructures, exhibit significant differences. Furthermore, in vivo experiments demonstrate the osseointegration in different types of rats and bones indeed favors different CaP coatings. This biomimetic strategy can be used to fabricate customized bone implants that can meet the specific requirements of various surgery conditions.


Asunto(s)
Fosfatasa Alcalina , Materiales Biocompatibles Revestidos , Animales , Fosfatos de Calcio/química , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Oseointegración , Ratas , Propiedades de Superficie , Titanio/química
20.
Front Surg ; 9: 911141, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35693317

RESUMEN

Background: Dynamic hip screw (DHS) is one of the most widely internal fixations for stabilizing intertrochanteric fracture, however, with a high risk of postoperative complications. The triangle support fixation plate (TSFP) is developed to reduce the postoperative complications. The purpose of study is to evaluate the biomechanical performance of the DHS and TSFP and demonstrate the rationality of triangular internal fixation for stabilizing intertrochanteric fractures. Methods: The CT data of the proximal femur were used to establish finite-element models. Evans type I and IV intertrochanteric fracture were constructed and stabilized with the DHS and TSFP. The Von-Mises stress, maximum principal stress, minimum principal stress, and displacement were used to evaluate the biomechanical effect of two implants on intertrochanteric fracture. Results: Under a 600N axial load, the maximum stress and displacement of an intact proximal femur were 13.78 MPa and 1.33 mm, respectively. The peak stresses of the bone in the TSFP were 35.41 MPa and 68.97 MPa for treating Evans type I and IV intertrochanteric fractures, respectively, which were lower than those in the DHS. The maximum overall displacement and relative distance of the fracture surface in the DHS fixation model were 1.66 mm and 0.10 mm for treating Evans type I intertrochanteric fracture, which was 29.59% and 150% higher than that in the TSFP, and were 2.24 mm and 0.75 mm for treating Evans type IV intertrochanteric fracture, which was 42.58% and 650% higher than that in the TSFP. Conclusions: In conclusion, the TSFP has obvious advantages in stress distribution and stability than the DHS, providing a promising option for the treatment of intertrochanteric fractures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...