Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Infect Dis Poverty ; 13(1): 38, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38790027

RESUMEN

BACKGROUND: West Nile virus (WNV), the most widely distributed flavivirus causing encephalitis globally, is a vector-borne pathogen of global importance. The changing climate is poised to reshape the landscape of various infectious diseases, particularly vector-borne ones like WNV. Understanding the anticipated geographical and range shifts in disease transmission due to climate change, alongside effective adaptation strategies, is critical for mitigating future public health impacts. This scoping review aims to consolidate evidence on the impact of climate change on WNV and to identify a spectrum of applicable adaptation strategies. MAIN BODY: We systematically analyzed research articles from PubMed, Web of Science, Scopus, and EBSCOhost. Our criteria included English-language research articles published between 2007 and 2023, focusing on the impacts of climate change on WNV and related adaptation strategies. We extracted data concerning study objectives, populations, geographical focus, and specific findings. Literature was categorized into two primary themes: 1) climate-WNV associations, and 2) climate change impacts on WNV transmission, providing a clear understanding. Out of 2168 articles reviewed, 120 met our criteria. Most evidence originated from North America (59.2%) and Europe (28.3%), with a primary focus on human cases (31.7%). Studies on climate-WNV correlations (n = 83) highlighted temperature (67.5%) as a pivotal climate factor. In the analysis of climate change impacts on WNV (n = 37), most evidence suggested that climate change may affect the transmission and distribution of WNV, with the extent of the impact depending on local and regional conditions. Although few studies directly addressed the implementation of adaptation strategies for climate-induced disease transmission, the proposed strategies (n = 49) fell into six categories: 1) surveillance and monitoring (38.8%), 2) predictive modeling (18.4%), 3) cross-disciplinary collaboration (16.3%), 4) environmental management (12.2%), 5) public education (8.2%), and 6) health system readiness (6.1%). Additionally, we developed an accessible online platform to summarize the evidence on climate change impacts on WNV transmission ( https://2xzl2o-neaop.shinyapps.io/WNVScopingReview/ ). CONCLUSIONS: This review reveals that climate change may affect the transmission and distribution of WNV, but the literature reflects only a small share of the global WNV dynamics. There is an urgent need for adaptive responses to anticipate and respond to the climate-driven spread of WNV. Nevertheless, studies focusing on these adaptation responses are sparse compared to those examining the impacts of climate change. Further research on the impacts of climate change and adaptation strategies for vector-borne diseases, along with more comprehensive evidence synthesis, is needed to inform effective policy responses tailored to local contexts.


Asunto(s)
Cambio Climático , Fiebre del Nilo Occidental , Virus del Nilo Occidental , Virus del Nilo Occidental/fisiología , Fiebre del Nilo Occidental/transmisión , Fiebre del Nilo Occidental/epidemiología , Humanos , Animales , Adaptación Fisiológica
2.
Huan Jing Ke Xue ; 45(3): 1674-1683, 2024 Mar 08.
Artículo en Chino | MEDLINE | ID: mdl-38471879

RESUMEN

Carbon, nitrogen, phosphorus, and potassium in the soil are the necessary nutrient elements for plant growth, and their contents and ecological stoichiometry can reflect the status of soil quality and nutrient limitation. The Huayuankou Yellow River Floating Bridge Wetland in the lower Yellow River was selected as the research object. The methods of ANOVA, redundancy analysis, and linear regression fitting were used to study the contents of organic carbon (SOC), total nitrogen (TN), total phosphorus (TP), total potassium (TK), alkaline nitrogen (AN), available phosphorus (AP), available potassium (AK), and their ecological stoichiometric ratios as well as the limiting elements of soil nutrients, and the key physicochemical properties that affect soil nutrients and their ecological stoichiometry in the wetland were revealed. The results showed that the mean values of ω(SOC), ω(TN), ω(TP), ω(TK), ω(AN), ω(AP), and ω(AK) in wetland soil were 5.46 g·kg-1, 0.60 g·kg-1, 0.28 g·kg-1, 17.06 g·kg-1, 13.75 mg·kg-1, 6.54 mg·kg-1, and 158.56 mg·kg-1, respectively, which showed an increasing trend from the river bank to the shoaly land and were generally higher at the high vegetation coverage areas than at the low vegetation coverage areas. There were significant correlations among SOC, TN, TP, and TK. Soil C/P, C/K, N/P, and N/K showed a consistent trend with soil nutrients, whereas C/N showed the opposite. The coefficients of variation of SOC, TN, AN, N/P, and N/K in the soil exceeded 50.00%, with significant spatial differences. The average value of C/N in wetland soil was 11.882, which was close to the average level of soils in China, whereas the average values of C/P and N/P were 49.119 and 4.516, respectively, both of which were lower than the average level of soils in China, and the N/P of soil was far less than 14, which indicated that N was limited in the soil. The proportion of clay and electrical conductivity combined to explain 61.4% and 43.9% of the variation in the soil nutrients and their ecological stoichiometry, respectively, which were the dominant soil physicochemical properties affecting the soil nutrients and their ecological stoichiometry of Huayuankou Yellow River Floating Bridge Wetland. The research results are helpful to improve our knowledge of nutrients and their influencing factors in the wetland soil of the lower Yellow River and provide an important scientific basis for the ecological restoration and management of the wetland in the lower Yellow River.

3.
Mol Psychiatry ; 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459194

RESUMEN

Cognitive and behavioral rigidity are observed in various psychiatric diseases, including in autism spectrum disorder (ASD). However, the underlying mechanism remains to be elucidated. In this study, we found that neuroligin-3 (NL3) R451C knockin mouse model of autism (KI mice) exhibited deficits in behavioral flexibility in choice selection tasks. Single-unit recording of medium spiny neuron (MSN) activity in the nucleus accumbens (NAc) revealed altered encoding of decision-related cue and impaired updating of choice anticipation in KI mice. Additionally, fiber photometry demonstrated significant disruption in dynamic mesolimbic dopamine (DA) signaling for reward prediction errors (RPEs), along with reduced activity in medial prefrontal cortex (mPFC) neurons projecting to the NAc in KI mice. Interestingly, NL3 re-expression in the mPFC, but not in the NAc, rescued the deficit of flexible behaviors and simultaneously restored NAc-MSN encoding, DA dynamics, and mPFC-NAc output in KI mice. Taken together, this study reveals the frontostriatal circuit dysfunction underlying cognitive inflexibility and establishes a critical role of the mPFC NL3 deficiency in this deficit in KI mice. Therefore, these findings provide new insights into the mechanisms of cognitive and behavioral inflexibility and potential intervention strategies.

4.
Front Plant Sci ; 15: 1333207, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38344186

RESUMEN

With the rapid development of the livestock industry, finding new sources of feed has become a critical issue that needs to be addressed urgently. China is one of the top five sunflower producers in the world and generates a massive amount of sunflower stalks annually, yet this resource has not been effectively utilized. Therefore, in order to tap into the potential of sunflower stalks for animal feed, it is essential to explore and develop efficient methods for their utilization.In this study, various proportions of alfalfa and sunflower straw were co-ensiled with the following mixing ratios: 0:10, 2:8, 4:6, 5:5, 6:4, and 8:2, denoted as A0S10, A2S8, A4S6, A5S5, A6S4, and A8S2, respectively. The nutrient composition, fermentation quality, microbial quantity, microbial diversity, and broad-spectrum metabolomics on the 60th day were assessed. The results showed that the treatment groups with more sunflower straw added (A2S8, A4S6) could start fermentation earlier. On the first day of fermentation, Weissella spp.dominated overwhelmingly in these two groups. At the same time, in the early stage of fermentation, the pH in these two groups dropped rapidly, which could effectively reduce the loss of nutrients in the early stage of fermentation.In the later fermentation period, a declining trend in acetic acid levels was observed in A0S10, A2S8, and A4S6, while no butyric acid production was detected in A0S10 and A2S8 throughout the process. In A4S6, butyric acid production was observed only after 30 days of fermentation. From the perspective of metabolites, compared with sunflower ensiling alone, many bioactive substances such as flavonoids, alkaloids, and terpenes are upregulated in mixed ensiling.

5.
World Neurosurg ; 181: e322-e329, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37839575

RESUMEN

BACKGROUND: The albumin/fibrinogen ratio (AFR) is an independent predictor of clinical outcomes of some diseases; however, the prognostic value of AFR and the admission Hunt-Hess (HH) score is still unclear for patients with an aneurysmal subarachnoid hemorrhage (aSAH). This study aimed to assess the relationship between the AFR-HH score and 6-month outcomes of aSAH patients. METHODS: The clinical characteristics of aSAH patients admitted to our department between December 2017 and December 2021 were retrospectively analyzed. The candidate risk factors were screened using univariate regression analysis, and the independence of the resultant risk factors was evaluated by binary logistic regression analysis. The predictive value of the combined AFR and HH score for unfavorable outcomes was assessed using receiver operating characteristic curve analysis. RESULTS: A total of 112 aSAH patients were included. Binary logistic regression analysis showed the perioperative period AFR, Glasgow coma scale score, and admission HH score were independent risk factors for unfavorable outcomes for aSAH patients. The receiver operating characteristic curve analysis showed the predictive capacity of AFR plus the admission HH score outperformed the AFR, Glasgow coma scale score, and admission HH scale alone and the combination of the AFR and Glasgow coma scale score. CONCLUSIONS: A low AFR during the perioperative period is associated with unfavorable outcomes for aSAH patients at 6 months. The combination of the AFR and admission HH scale score provides superior predictive capacity to either the AFR or HH scale score alone.


Asunto(s)
Hemorragia Subaracnoidea , Humanos , Hemorragia Subaracnoidea/diagnóstico , Hemorragia Subaracnoidea/cirugía , Estudios Retrospectivos , Fibrinógeno , Pronóstico , Escala de Coma de Glasgow
6.
J Mol Model ; 29(12): 373, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37957312

RESUMEN

CONTEXT: The development of high-efficiency photovoltaic devices is the need of time with increasing demand for energy. Herein, we designed seven small molecule donors (SMDs) with A-π-D-π-A backbones containing various acceptor groups for high-efficiency organic solar cells (OSCs). Molecular engineering was performed by substituting the acceptor group in the synthesized compound (BPR) with another highly efficient acceptor group to improve the photoelectric performance of the molecule. METHOD: The photovoltaic, optoelectronic, and photophysical properties of the proposed compounds (BP1-BP7) were investigated in comparison to BPR using DFT and TD-DFT at MPW1PW91/6-311G(d,p) level of theory. All molecules we designed have red-shifted absorption spectra. The modification of the acceptor fragment of the BPR resulted in a reduced HOMO-LUMO energy gap; thus, the designed compounds (BP1-BP7) had improved optoelectronic responses as compared with the BPR molecule. Various key factors that are crucial for efficient SMDs such as exciton binding energy, frontier molecular orbitals (FMOs), absorption maximum (λmax), open circuit voltage (VOC), dipole moment (µ), excitation charge mobilities, and the transition density matrix of (BPR, BP1-BP7) have also been studied. Low reorganizational energy (holes and electrons) values provide high charge mobility, and all the designed compounds are efficient in this regard. Here, BP6 exhibits low excitation energy (1.66 eV), highest open circuit voltage (2.00 V), normalized VOC (77.23), and fill factor (0.931). Consequently, the superiority of the designed molecules advises experimenters to envision future developments in extremely effective OSC devices.

7.
J Agric Food Chem ; 71(44): 16727-16738, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37871231

RESUMEN

Di-(2-ethylhexyl) phthalate (DEHP) is frequently used as a plasticizer in industrial and agricultural products. DEHP can cause severe neurotoxicity, such as impaired learning and memory function. Lycopene (LYC) as a carotenoid exerts excellent antioxidant capacity and therapeutic effects in neurodegenerative diseases. However, whether LYC can prevent the cognitive impairment induced by DEHP and the specific mechanisms are unclear. In the present study, the behavioral test results suggested that LYC alleviated the learning and memory impairment induced by DEHP. The histopathological data revealed that LYC attenuated DEHP-induced disordered arrangement of the neurons in the CA1 and CA3 regions of the hippocampus tissue. Moreover, LYC inhibited the occurrence of DEHP-induced ferroptosis via regulating iron metabolism, inhibiting lipid peroxidation, and activating the cysteine transporter and nuclear factor erythroid 2-related factor 2/heme oxygenase-1 (NrF2/HO-1) signaling pathway. Overall, the study contributes novel perspectives into the potential mechanisms of LYC preventing phthalate-induced cognitive impairment in the hippocampus.


Asunto(s)
Disfunción Cognitiva , Dietilhexil Ftalato , Ferroptosis , Humanos , Licopeno/metabolismo , Estrés Oxidativo , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/prevención & control , Disfunción Cognitiva/tratamiento farmacológico
8.
Int J Biol Macromol ; 250: 126202, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37573916

RESUMEN

The formation of three dimensional network structure is critical in determining mechanical properties of natural rubber (NR). Consequently, it is vital to regulate crosslinking network of NR by controlling vulcanization process. Inspired by our previous studies on contribution of non-rubber components (NRCs) to the excellent properties of NR, we find octylamine in NRCs decreases the activation energy (Ea) of vulcanization from 82.73 kJ/mol to 44.34 kJ/mol, thereby reducing vulcanization time from 18.67 min to 2.71 min. From microscopic perspective, octylamine tends to coordinate with zinc ions to improve dispersion of ZnO in NR. And octylamine promotes ring-opening reaction of S8 to favor formation of polysulfide intermediates. Therefore, the incorporation of octylamine remarkably improves vulcanization efficiency, which contributes to the formation of a more homogeneous network with higher crosslinking density, enhancing remarkably the strength and toughness of NR. As a result, the tensile strength and fracture energy of samples are as high as 31.15 MPa and 68.88 kJ/m2, respectively. In addition, even with a 60 % reduction in ZnO content, the NR samples still maintain high vulcanization efficiency and excellent mechanical properties after the addition of octylamine, which provides a green and feasible way to alleviate the environmental pollution caused by ZnO.

9.
Neural Regen Res ; 18(10): 2252-2259, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37056145

RESUMEN

In response to spinal surgery, neurons secrete a large amount of substance P into the epidural area. Substance P is involved in macrophage differentiation and fibrotic disease. However, the specific roles and mechanisms of substance P in epidural fibrosis remain unclear. In this study, we established a mouse model of L1-L3 laminectomy and found that dorsal root ganglion neurons and the macrophages infiltrating into the wound area released sphingolipids. In vitro experiments revealed that type 1 macrophages secreted substance P, which promoted differentiation of type 1 macrophages towards a type 2 phenotype. High-throughput mRNA-seq analysis revealed that the sphingolipid metabolic pathway may be involved in the regulation of type 2 macrophages by substance P. Specifically, sphingomyelin synthase 2, a component of the sphingolipid metabolic pathway, promoted M2 differentiation in substance P-treated macrophages, while treating the macrophages with LY93, a sphingomyelin synthase 2 inhibitor, suppressed M2 differentiation. In addition, substance P promoted the formation of neutrophil extracellular traps, which further boosted M2 differentiation. Blocking substance P with the neurokinin receptor 1 inhibitor RP67580 decreased the number of M2 macrophages in the wound area after spinal surgery and alleviated epidural fibrosis, as evidenced by decreased fibronectin, α-smooth muscle actin, and collagen I in the scar tissue. These results demonstrated that substance P promotes M2 macrophage differentiation in epidural fibrosis via sphingomyelin synthase 2 and neutrophil extracellular traps. These findings provide a novel strategy for the treatment of epidural fibrosis.

10.
J Nutr Biochem ; 115: 109285, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36796548

RESUMEN

Di-(2-ethylhexyl) phthalate (DEHP) is a plasticizer that is easily found in the environment. Excessive daily exposure of it may lead to an increased risk of cardiovascular disease (CVD). Lycopene (LYC), as a natural carotenoid, has been shown to have the potential to prevent CVD. However, the mechanism of LYC on cardiotoxicity caused by DEHP exposure is unknown. The research was aimed to investigate the chemoprotection of LYC on the cardiotoxicity caused by DEHP exposure. Mice were treated with DEHP (500 mg/kg or 1,000 mg/kg) and/or LYC (5 mg/kg) for 28 d by intragastric administration, and the heart was subjected to histopathology and biochemistry analysis. The results indicated that DEHP caused cardiac histological alterations and enhanced the activity of cardiac injury indicators, and interfered with mitochondrial function and activating mitophagy. Notably, LYC supplementation could inhibit DEHP-induced oxidative stress. The mitochondrial dysfunction and emotional disorder caused by DEHP exposure were significantly improved through the protective effect of LYC. We concluded that LYC enhances mitochondrial function by regulating mitochondrial biogenesis and dynamics to antagonize DEHP-induced cardiac mitophagy and oxidative stress.


Asunto(s)
Dietilhexil Ftalato , Ratones , Animales , Licopeno/farmacología , Dietilhexil Ftalato/toxicidad , Dietilhexil Ftalato/metabolismo , Cardiotoxicidad/prevención & control , Cardiotoxicidad/metabolismo , Mitofagia , Estrés Oxidativo , Mitocondrias/metabolismo , Homeostasis
11.
Phys Chem Chem Phys ; 25(5): 3799-3805, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36647743

RESUMEN

To obtain atomic-level insights into the decomposition behavior of 1,3,5-trinitro-2,4,6-trinitroaminobenzene (TNTNB) under different stimulations, this study applied reactive molecular dynamics simulations to illustrate the effects of thermal and shock stimuli on the TNTNB crystal. The results show that the initial decomposition of the TNTNB crystal under both thermal and shock stimuli starts with the breakage of the N-NO2 bond. However, the C6 ring in TNTNB undergoes structural rearrangement to form a C3-C5 bicyclic structure at a constant high temperature. Then, the C3 and C5 rings break in turn. The main final products of TNTNB under shock are N2, CO2, and H2O, while NO,  N2, H2O and CO are formed instead at 1 atm under a constant high temperature. Pressure is the main reason for this difference. High pressure promotes the complete oxidation of the reactants.

12.
Redox Biol ; 59: 102584, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36580806

RESUMEN

The global rate of human male infertility is rising at an alarming rate owing to environmental and lifestyle changes. Phthalates are the most hazardous chemical additives in plastics and have an apparently negative impact on the function of male reproductive system. Ferroptosis is a recently described form of iron-dependent cell death and has been linked to several diseases. Transferrin receptor (TfRC), a specific ferroptosis marker, is a universal iron importer for all cells using extracellular transferrin. We aim to investigate the potential involvement of ferroptosis during male reproductive toxicity, and provide means for drawing conclusions on the effect of ferroptosis in phthalates-induced male reproductive disease. In this study, we found that di (2-ethylhexyl) phthalate (DEHP) triggered blood-testis barrier (BTB) dysfunction in the mouse testicular tissues. DEHP also induced mitochondrial morphological changes and lipid peroxidation, which are manifestations of ferroptosis. As the primary metabolite of DEHP, mono-2-ethylhexyl phthalate (MEHP) induced ferroptosis by inhibiting glutathione defense network and increasing lipid peroxidation. TfRC knockdown blocked MEHP-induced ferroptosis by decreasing mitochondrial and intracellular levels of Fe2+. Our findings indicate that TfRC can regulate Sertoli cell ferroptosis and therefore is a novel therapeutic molecule for reproductive disorders in male patients with infertility.


Asunto(s)
Dietilhexil Ftalato , Ferroptosis , Humanos , Masculino , Ratones , Animales , Barrera Hematotesticular/metabolismo , Receptores de Transferrina/genética
13.
Pest Manag Sci ; 79(1): 428-436, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36177948

RESUMEN

BACKGROUND: Host plant-microbe associations mediate interspecific interactions amongst herbivorous insects. However, this theory has rarely been ecologically verified in tephritid fruit flies. Research on this subject can not only help predict tephritid species invasion and occurrence patterns, but also develop potential novel lures for the control of the tephritid fruit fly pests. Recently, we observed mixed infestation of Bactrocera minax and Bactrocera dorsalis larvae in citrus orchards, which prompted us to explore the underlying mechanism. RESULTS: Following oviposition by B. minax, the yeast Pichia kluyveri translocated to and proliferated inside the citrus fruit. The level of d-limonene released from citrus fruits containing P. kluyveri was 27 times higher than that released from healthy fruits. Mature B. dorsalis females were attracted to d-limonene and oviposited into fruits previously infested by B. minax. Furthermore, the interspecific interaction between B. dorsalis and B. minax within the same fruit significantly decreased the number of surviving larvae and pupal weight in B. dorsalis, but its effect on B. minax was weaker. CONCLUSION: In the studied interspecific interaction, B. minax occupies the dominant position, implying ecological significance for this species in terms of consolidating its own niche and inhibiting the invasion of exotic species. To our best knowledge, this is the first report from both ecological and physiological perspectives on a symbiotic yeast mediating the interaction between B. minax and B. dorsalis through altering fruit volatiles. © 2022 Society of Chemical Industry.


Asunto(s)
Saccharomyces cerevisiae
14.
J Mol Model ; 28(10): 299, 2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36066673

RESUMEN

Pentazolate (cyclo-N5-) salts are nitrogen-rich compounds with great development potential as energetic materials due to their full nitrogen anion. However, the densities of available N5- salts are generally low, which seriously lowers their performances. It is necessary to screen out cyclo-N5- salts with high density. To this end, eight new non-metallic cyclo-N5- salts based on fused heterocycle were designed. -NH2, -NO2, and -O- groups were introduced into the compounds to adjust and improve the detonation performance and impact sensitivity of cyclo-N5- salts. By theoretical calculations and Hirshfeld surface analyses, the densities, heats of formation, detonation performance, sensitivities, and crystal structures of the title compounds were predicted, and the contribution of hydrogen bond as well as π-π stacking to the stability of cyclo-N5- salt was revealed. The results indicate that the densities of title compounds are higher than 1.85 g cm‒3, and the sensitivities of these compounds are predicted to be lower than that of HMX. The detonation properties of a (D = 9.47 km s-1, P = 41.21 GPa) and d (D = 9.44 km s-1, P = 40.26 GPa) are better than those of HMX. These mean that using fused ring as a cation and introducing proper substituents are an effective method to improve cyclo-N5- salt's density and balance the detonation performance and sensitivity.

15.
Small ; 18(32): e2203356, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35836099

RESUMEN

Hollow structured metal-organic frameworks (MOFs) and their derivatives are desired in catalysis, energy storage, etc. However, fabrication of novel hollow MOFs and revelation of their formation mechanisms remain challenging. Herein, open hollow 2D MOFs in the form of hexagonal nut are prepared through self-template method, which can be readily scaled up at gram scale in a one-pot preparation. The evolution from the initial superstructure to the final stable MOFs is tracked by wide-angle X-ray scattering, transforming from solid hexagon to open hollow hexagon. More importantly, this protocol can be extended to synthesizing a series of open hollow structured MOFs with sizes ranging from ≈120 to ≈1200 nm. Further, open hollow structured cobalt/N-doped porous carbon composites are realized through conformal transformation of the as-prepared MOFs, which demonstrates promising applications in sustainable energy conversion technologies. This study sheds light on the kinetically controlled synthesis of novel 2D MOFs for their extended utilizations.


Asunto(s)
Estructuras Metalorgánicas , Catálisis , Cobalto/química , Estructuras Metalorgánicas/química , Conformación Molecular , Nueces
16.
Polymers (Basel) ; 14(6)2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35335564

RESUMEN

Zinc oxide (ZnO), which is toxic to aquatic organisms, is widely used as an activator in the rubber industry. The reduction of ZnO content is one of the efficient ways to tackle ecological environment impacts induced by ZnO. However, the incompatibility between Zn2+ and organic matrix inhibits the solubility and activity of Zn2+ in the organic matrix, causing the heavy use of ZnO. This work develops a phase transfer agent with Zn2+-philic structure and oleophilic structure to increase the solubility of Zn2+ in the organic matrix. The phase transfer agent and Zn2+ form coordination interactions, while the hydrophobic chains of phase transfer agent and organic matrix form hydrophobic interactions. The above two interactions improve the solubility and activity of Zn2+ in the organic matrix, contributing to the formation of crosslinking network. Through the phase transfer agent strategy, we obtain the mechanically robust elastomers, and the samples with low ZnO content still maintain the superior properties. This work provides an efficient way to reduce ZnO content without sacrificing the performance of elastomers.

17.
Acta Neurol Belg ; 122(5): 1169-1175, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33587240

RESUMEN

Mutations in the SH3TC2 gene cause Charcot-Marie-Tooth disease type 4C (CMT4C), characterized by inherited demyelinating peripheral neuropathy. CMT4C is a common form of CMT4/autosomal recessive (AR) CMT1. This study examined the SH3TC2 variants, investigated genotype-phenotype correlations and explored the frequency of CMT4C in Chinese patients. A total of 206 unrelated patients of Chinese Han descent clinically diagnosed with CMT were recruited. All patients underwent detailed history-taking, neurological examination, laboratory workups, and electrophysiological studies. Genetic analysis was performed via high-throughput target sequencing (NGS). Three patients, one male and two females, were found to carry five SH3TC2 mutations: patient 1 (c.3154C > T, p.R1054X; c.929G > A, p.G310E); Patient 2 (c.2872_2872del, p.S958fs; c.3710C > T, p.A1237V) and Patient 3 (c.2782C > T, p.Q928X; c.929G > A, p.G310E). The c.2872_2872del, c.3710C > T and c.2782C > T variants were not reported before. CMT4C caused by SH3TC2 mutation is a very common type of CMT4/AR CMT1. Three novel mutations, c.2872_2872del, c.3710C > T and c.2782C > T, were found in this study. Combination of clinical phenotype, nerve conduction studies, genetic analysis and bioinformatics analysis are of vital importance in patients suspected as CMT.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Enfermedad de Charcot-Marie-Tooth/diagnóstico , Enfermedad de Charcot-Marie-Tooth/genética , China , Femenino , Humanos , Péptidos y Proteínas de Señalización Intracelular , Masculino , Mutación/genética , Fenotipo
18.
Asian J Androl ; 24(5): 562, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34747728

RESUMEN

[This corrects the article DOI: 10.4103/aja.aja_89_19].

19.
Front Plant Sci ; 13: 1059536, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36589064

RESUMEN

Enhanced carotenoid accumulation in plants is crucial for the nutritional and health demands of the human body since these beneficial substances are acquired through dietary intake. Plastids are the major organelles to accumulate carotenoids in plants and it is reported that manipulation of a single plastid phosphate transporter gene enhances carotenoid accumulation. Amongst all phosphate transport proteins including phosphate transporters (PHTs), plastidial phosphate translocators (pPTs), PHOSPHATE1 (PHO1), vacuolar phosphate efflux transporter (VPE), and Sulfate transporter [SULTR]-like phosphorus distribution transporter (SPDT) in plants, plastidic PHTs (PHT2 & PHT4) are found as the only clade that is plastid located, and manipulation of which affects carotenoid accumulation. Manipulation of a single chromoplast PHT (PHT4;2) enhances carotenoid accumulation, whereas manipulation of a single chloroplast PHT has no impact on carotenoid accumulation. The underlying mechanism is mainly attributed to their different effects on plastid orthophosphate (Pi) concentration. PHT4;2 is the only chromoplast Pi efflux transporter, and manipulating this single chromoplast PHT significantly regulates chromoplast Pi concentration. This variation subsequently modulates the carotenoid accumulation by affecting the supply of glyceraldehyde 3-phosphate, a substrate for carotenoid biosynthesis, by modulating the transcript abundances of carotenoid biosynthesis limited enzyme genes, and by regulating chromoplast biogenesis (facilitating carotenoid storage). However, at least five orthophosphate influx PHTs are identified in the chloroplast, and manipulating one of the five does not substantially modulate the chloroplast Pi concentration in a long term due to their functional redundancy. This stable chloroplast Pi concentration upon one chloroplast PHT absence, therefore, is unable to modulate Pi-involved carotenoid accumulation processes and finally does affect carotenoid accumulation in photosynthetic tissues. Despite these advances, several cases including the precise location of plastid PHTs, the phosphate transport direction mediated by these plastid PHTs, the plastid PHTs participating in carotenoid accumulation signal pathway, the potential roles of these plastid PHTs in leaf carotenoid accumulation, and the roles of these plastid PHTs in other secondary metabolites are waiting for further research. The clarification of the above-mentioned cases is beneficial for breeding high-carotenoid accumulation plants (either in photosynthetic or non-photosynthetic edible parts of plants) through the gene engineering of these transporters.

20.
Biochem Biophys Res Commun ; 580: 100-106, 2021 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-34634673

RESUMEN

Circular RNAs (circRNAs) are known to regulate tumorigenesis. In this study, circRNAs microarray was used to analyze the circRNA expression in lung adenocarcinoma (LUAD) tissues, and CircRNA zinc finger MYM-type containing 4(circZMYM4) was selected for further analysis. In this study, we detected circZMYM4 expression in LUAD specimens and cell lines using RT-PCR. The expression of circZMYM4 was further verified in the GEO datasets and TCGA datasets. Gain-of-function and loss-of-function experiments were used to analyze the effects of circZMYM4 on LUAD in vivo and in vitro. The relationship between miR-587 and circZMYM4 or ODAM was predicted by bioinformatics tools and confirmed using dual-luciferase reporter assays and RNA-pull down. We found that circZMYM4 was distinctly down-regulated in LUAD tissues and cell lines. Functional assays revealed that circZMYM4 overexpression suppressed LUAD cell proliferation, metastasis and suppressed apoptosis, while miR-587 overexpression could weaken these effects. Importantly, circZMYM4 upregulated ODAM expression via sponging miR-587 to suppress LUAD progression. ODAM knockdown could reverse the repressive effect of circZMYM4 overexpression on cell proliferation, migration and invasion abilities. Overall, circZMYM4 regulates the miR-587/ODAM axis to suppress LUAD progression, which may become a potential biomarker and therapeutic target.


Asunto(s)
Adenocarcinoma del Pulmón/genética , Amiloide/genética , Neoplasias Pulmonares/genética , MicroARNs/genética , Proteínas de Neoplasias/genética , ARN Circular/genética , Adenocarcinoma del Pulmón/patología , Animales , Carcinogénesis/genética , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/patología , Ratones Endogámicos BALB C , Ratones Desnudos , Metástasis de la Neoplasia/genética , Metástasis de la Neoplasia/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...