Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202410420, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961660

RESUMEN

The structural failure of Na2Mn[Fe(CN)6] could not be alleviated with traditional modification strategies through the adjustable composition property of Prussian blue analogues (PBAs), considering that the accumulation and release of stress derived from the MnN6 octahedrons are unilaterally restrained. Herein, a novel application of adjustable composition property, through constructing a coordination competition relationship between chelators and [Fe(CN)6]4- to directionally tune the enrichment of elements, is proposed to restrain structural degradation and induce unconventional energy coupling phenomenon. The non-uniform distribution of elements at the M1 site of PBAs (NFM-PB) is manipulated by the sequentially precipitated Ni, Fe, and Mn according to the Irving-William order. Electrochemically active Fe is operated to accompany Mn, and zero-strain Ni is modulated to enrich at the surface, synergistically mitigating with the enrichment and release of stress and then significantly improving the structural stability. Furthermore, unconventional energy coupling effect, a fusion of the electrochemical behavior between FeLS and MnHS, is triggered by the confined element distribution, leading to the enhanced electrochemical stability and anti-polarization ability. Consequently, the NFM-PB demonstrates superior rate performance and cycling stability. These findings further exploit potentialities of the adjustable composition property and provide new insights into the component design engineering for advanced PBAs.

2.
Small ; : e2403736, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38990899

RESUMEN

Transition metal selenides (TMSs) are receiving considerable interest as improved anode materials for sodium-ion batteries (SIBs) and lithium-ion batteries (LIBs) due to their considerable theoretical capacity and excellent redox reversibility. Herein, ZIF-12 (zeolitic imidazolate framework) structure is used for the synthesis of Cu2Se/Co3Se4@NPC anode material by pyrolysis of ZIF-12/Se mixture. When Cu2Se/Co3Se4@NPC composite is utilized as an anode electrode material in LIB and SIB half cells, the material demonstrates excellent electrochemical performance and remarkable cycle stability with retaining high capacities. In LIB and SIB half cells, the Cu2Se/Co3Se4@NPC anode material shows the ultralong lifespan at 2000 mAg-1, retaining a capacity of 543 mAhg-1 after 750 cycles, and retaining a capacity of 251 mAhg-1 after 200 cycles at 100 mAg-1, respectively. The porous structure of the Cu2Se/Co3Se4@NPC anode material can not only effectively tolerate the volume expansion of the electrode during discharging and charging, but also facilitate the penetration of electrolyte and efficiently prevents the clustering of active particles. In situ X-ray difraction (XRD) analysis results reveal the high potential of Cu2Se/Co3Se4@NPC composite in building efficient LIBs and SIBs due to reversible conversion reactions of Cu2Se/Co3Se4@NPC for lithium-ion and sodium-ion storage.

3.
J Phys Chem Lett ; 15(26): 6743-6749, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38912658

RESUMEN

Layered sodium transition-metal oxides generally encounter severe capacity decay and inferior rate performance during cycling, especially at a high state of charge. Herein, defect concentration is rationally modulated to explore the impact on electrochemical behavior in NaNi1/3Fe1/3Mn1/3O2 layered oxides. Bulk vacancies are increased through annealing in an oxygen-rich atmosphere, demonstrated by electron paramagnetic resonance measurement. It is found that the cathode with enriched oxygen vacancies exhibits significantly enhanced reversibility of redox reactions with a higher initial Coulombic efficiency of 90.0%. Furthermore, the reduced volume variations during the initial charge/discharge process are also confirmed by in situ X-ray diffraction. As a result, the oxygen-vacancy-rich cathode shows great cycling stability and superior rate performances. Also, full cells deliver a specific capacity of approximately 145.2 mAh g-1 at 0.5 C, with a high capacity retention of 78.3% after 100 cycles. This work presents a viable strategy for designing Na+ intercalated cathodes with a high-energy density.

4.
ACS Nano ; 18(20): 13150-13163, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38726816

RESUMEN

Layered sodium transition-metal (TM) oxides generally suffer from severe capacity decay and poor rate performance during cycling, especially at a high state of charge (SoC). Herein, an insight into failure mechanisms within high-voltage layered cathodes is unveiled, while a two-in-one tactic of charge localization and coherent structures is devised to improve structural integrity and Na+ transport kinetics, elucidated by density functional theory calculations. Elevated Jahn-Teller [Mn3+O6] concentration on the particle surface during sodiation, coupled with intense interlayer repulsion and adverse oxygen instability, leads to irreversible damage to the near-surface structure, as demonstrated by X-ray absorption spectroscopy and in situ characterization techniques. It is further validated that the structural skeleton is substantially strengthened through the electronic structure modulation surrounding oxygen. Furthermore, optimized Na+ diffusion is effectively attainable via regulating intergrown structures, successfully achieved by the Zn2+ inducer. Greatly, good redox reversibility with an initial Coulombic efficiency of 92.6%, impressive rate capability (86.5 mAh g-1 with 70.4% retention at 10C), and enhanced cycling stability (71.6% retention after 300 cycles at 5C) are exhibited in the P2/O3 biphasic cathode. It is believed that a profound comprehension of layered oxides will herald fresh perspectives to develop high-voltage cathode materials for sodium-ion batteries.

5.
Curr Genet ; 70(1): 4, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38555312

RESUMEN

Panax notoginseng (Burkill) F.H. Chen, a valuable traditional Chinese medicine, faces significant yield and quality challenges stemming from root rot primarily caused by Fusarium solani. Burkholderia arboris PN-1, isolated from the rhizosphere soil of P. notoginseng, demonstrated a remarkable ability to inhibit the growth of F. solani. This study integrates phenotypic, phylogenetic, and genomic analyses to enhance our understanding of the biocontrol mechanisms employed by B. arboris PN-1. Phenotype analysis reveals that B. arboris PN-1 effectively suppresses P. notoginseng root rot both in vitro and in vivo. The genome of B. arboris PN-1 comprises three circular chromosomes (contig 1: 3,651,544 bp, contig 2: 1,355,460 bp, and contig 3: 3,471,056 bp), with a 66.81% GC content, housing 7,550 protein-coding genes. Notably, no plasmids were detected. Phylogenetic analysis places PN-1 in close relation to B. arboris AU14372, B. arboris LMG24066, and B. arboris MEC_B345. Average nucleotide identity (ANI) values confirm the PN-1 classification as B. arboris. Comparative analysis with seven other B. arboris strains identified 4,628 core genes in B. arboris PN-1. The pan-genome of B. arboris appears open but may approach closure. Whole-genome sequencing revealed 265 carbohydrate-active enzymes and identified 9 gene clusters encoding secondary metabolites. This comprehensive investigation enhances our understanding of B. arboris genomes, paving the way for their potential as effective biocontrol agents against fungal plant pathogens in the future.


Asunto(s)
Burkholderia , Fusarium , Panax notoginseng , Panax notoginseng/genética , Panax notoginseng/metabolismo , Panax notoginseng/microbiología , Filogenia , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología , Fusarium/genética , Genómica
6.
Sci Bull (Beijing) ; 69(6): 772-783, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38310048

RESUMEN

Na4Fe3(PO4)2(P2O7) (NFPP) is currently drawing increased attention as a sodium-ion batteries (SIBs) cathode due to the cost-effective and NASICON-type structure features. Owing to the sluggish electron and Na+ conductivities, however, its real implementation is impeded by the grievous capacity decay and inferior rate capability. Herein, multivalent cation substituted microporous Na3.9Fe2.9Al0.1(PO4)2(P2O7) (NFAPP) with wide operation-temperature is elaborately designed through regulating structure/interface coupled electron/ion transport. Greatly, the derived Na vacancy and charge rearrangement induced by trivalent Al3+ substitution lower the ions diffusion barriers, thereby endowing faster electron transport and Na+ mobility. More importantly, the existing Al-O-P bonds strengthen the local environment and alleviate the volume vibration during (de)sodiation, enabling highly reversible valence variation and structural evolution. As a result, remarkable cyclability (over 10,000 loops), ultrafast rate capability (200 C), and exceptional all-climate stability (-40-60 °C) in half/full cells are demonstrated. Given this, the rational work might provide an actionable strategy to promote the electrochemical property of NFPP, thus unveiling the great application prospect of sodium iron mixed phosphate materials.

7.
J Environ Sci (China) ; 138: 74-87, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38135435

RESUMEN

As a vital type of light-absorbing aerosol, brown carbon (BrC) presents inherent associations with atmospheric photochemistry and climate change. However, the understanding of the chemical and optical properties of BrC is limited, especially in some resource-dependent cities with long heating periods in northwest China. This study showed that the annual average abundances of Water-soluble BrC (WS-BrC) were 9.33±7.42 and 8.69±6.29 µg/m3 in Baotou and Wuhai and the concentrations, absorption coefficient (Abs365), and mass absorption efficiency (MAE365) of WS-BrC presented significant seasonal patterns, with high values in the heating season and low values in the non-heating season; while showing opposite seasonal trends for the Absorption Ångström exponent (AAE300-400). Comparatively, the levels of WS-BrC in developing regions (such as cities in Asia) were higher than those in developed regions (such as cities in Europe and Australia), indicating the significant differences in energy consumption in these regions. By combining fluorescence excitation-emission matrix (EEM) spectra with the parallel factor (PARAFAC) model, humic-like (C1 and C2) and protein-like (C3) substances were identified, and accounted for 61.40%±4.66% and 38.6%±3.78% at Baotou, and 60.33%±6.29% and 39.67%±4.17% at Wuhai, respectively. The results of source apportionment suggested that the potential source regions of WS-BrC varied in heating vs. non-heating seasons and that the properties of WS-BrC significantly depended on primary emissions (e.g., combustion emissions) and secondary formation.


Asunto(s)
Contaminantes Atmosféricos , Carbono , Ciudades , Carbono/análisis , Agua/química , Monitoreo del Ambiente , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Material Particulado/análisis
8.
Small Methods ; 7(11): e2300635, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37572008

RESUMEN

Sodium layered oxides feature in high capacity and diverse composition, however, are plagued by various issues including limited kinetics and interfacial instability with residual alkali. Conventional substitution/doping and heterogeneous coating are promising to tackle the problems of bulk and surface, respectively, but normally insufficient to address both. Herein, a post-substitution strategy is proposed to modify primary sodium-layered-oxide particles that can simultaneously deal with bulk and surficial issues. As a typical example, post Ti-substitution for O3-NaNi1/3 Fe1/3 Mn1/3 O2 is successfully performed by adjusting thermodynamic driving force, resulting in depth-controllable Ti infusion from surface to bulk, as proved by energy dispersive spectroscopy maps collected at the cross-section. Residual alkali species are efficiently diminished and benefited from the surface-to-bulk osmotic reaction, significantly improving Coulombic efficiency. Moreover, remarkable enhancements in reversible capacity (135 mAh g-1 at C/10), rate capability (74% retention at 5 C), and long-term cycling stability (80% retention after 300 cycles at 2 C) are achieved by manipulating gradient-like Ti distribution in a primary particle that brings with increased kinetics and strengthened interfacial stability, surpassing those given by rough heterotic coating and homogeneous Ti-substitution. Such post-substitution is expected to provide a universal strategy to modify primary layered-oxide particles for developing advanced cathode materials of SIBs.

9.
ACS Nano ; 17(13): 12530-12543, 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37382902

RESUMEN

Sodium layered oxides always suffer from sluggish kinetics and deleterious phase transformations at deep-desodiation state (i.e., >4.0 V) in O3 structure, incurring inferior rate capability and grievous capacity degradation. To tackle these handicaps, here, a configurational entropy tuning protocol through manipulating the stoichiometric ratios of inactive cations is proposed to elaborately design Na-deficient, O3-type NaxTmO2 cathodes. It is found that the electrons surrounding the oxygen of the TmO6 octahedron are rearranged by the introduction of MnO6 and TiO6 octahedra in Na-deficient O3-type Na0.83Li0.1Ni0.25Co0.2Mn0.15Ti0.15Sn0.15O2-δ (MTS15) with expanded O-Na-O slab spacing, giving enhanced Na+ diffusion kinetics and structural stability, as disclosed by theoretical calculations and electrochemical measurements. Concomitantly, the entropy effect contributes to the improved reversibility of Co redox and phase-transition behaviors between O3 and P3, as clearly revealed by ex situ synchrotron X-ray absorption spectra and in situ X-ray diffraction. Notably, the prepared entropy-tuned MTS15 cathode exhibits impressive rate capability (76.7% capacity retention at 10 C), cycling stability (87.2% capacity retention after 200 cycles) with a reversible capacity of 109.4 mAh g-1, good full-cell performance (84.3% capacity retention after 100 cycles), and exceptional air stability. This work provides an idea for how to design high-entropy sodium layered oxides for high-power density storage systems.

10.
ACS Nano ; 17(13): 12759-12773, 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37350442

RESUMEN

Further popularization of ultrahigh-Ni layered cathodes for high-energy lithium-ion batteries (LIBs) is hampered by their grievous structural and interfacial degeneration upon cycling. Herein, by leveraging the strong electronegativity and low solubility properties of Sb element, a multifunctional modification that couples atomic/microstructural reconstruction with interfacial shielding is well designed to improve the LiNi0.94Co0.04Al0.02O2 (NCA) cathode by combining Sb5+ doping and Li7SbO6 coating. Notably, a robust O framework is established by regulating local O coordination owing to the incorporation of a strong Sb-O covalence bond, leading to the inhibited lattice O evolution at high voltage, as revealed by synchrotron X-ray absorption spectroscopy. Moreover, the radially aligned primary particles with (003) crystallographic texture and refined/elongated sizes are achieved by the pinning of Sb on grain boundaries and are confirmed by scanning transmission electron microscopy, resulting in the fast Li+ diffusion and mitigated particle cracking. Additionally, in situ construction of the Li7SbO6 ionic conductive layer on grain boundaries can effectively boost interfacial stability and Li+ kinetics. As a result, the optimal Sb-modified NCA delivers a high capacity retention of 94.6% after 200 cycles at 1 C and a good rate capacity of 183.9 mAh g-1 at 10 C, which is expected to be applied to next-generation advanced LIBs.

11.
Inorg Chem ; 62(23): 9099-9110, 2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37227733

RESUMEN

Na4Fe3(PO4)2(P2O7) (NFPP) is an attractive candidate for Na+ batteries (SIBs) and Li+ batteries (LIBs). However, the real implementation of NFPP has been critically restrained by the inferior intrinsic electronic conductivity. Herein, in situ carbon-coated mesoporous NFPP, obtained via freeze drying and heat treatment, demonstrates highly reversible insertion/extraction of Na+/Li+. Mechanically, the electronic transmission and structural stabilities of NFPP are significantly enhanced by the graphitized carbon coating layer. Chemically, the porous nanosized structure shortens Na+/Li+ diffusion paths and increases the contact area between the electrolyte and NFPP, ultimately rendering fast ion diffusion. Greatly, long-lasting cyclability (88.5% capacity retention for over 5000 cycles), decent thermal stability at 60 °C, and impressive electrochemical performances are demonstrated in LIBs. The insertion/extraction mechanisms of NFPP in both SIBs and LIBs are systematically investigated, confirming its small volume expansion and high reversibility. The superior electrochemical performances and the insertion/extraction mechanism investigation confirm the feasibility of utilizing NFPP as a cathode material for Na+/Li+ batteries.

12.
Angew Chem Int Ed Engl ; 62(25): e202218672, 2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37083044

RESUMEN

With ever-increasing pursuit for high-value output in recycling spent lithium-ion batteries (LIBs), traditional recycling methods of cathodes tend to be obsolete because of the complicated procedures. Herein, we first upcycle spent polycrystal LiNi0.88 Co0.095 Al0.025 O2 (S-NCA) to high value-added single-crystalline and Li-rich cathode materials through a simple but feasible LiOH-Na2 SO4 eutectic molten salt strategy. The in situ X-ray diffraction technique and a series of paratactic experiments record the evolution process of upcycling and prove that excessive Li occupies the transition metal (TM) layers. Beneficial from the single-crystalline and Li-rich nature, the regenerated NCA (R-NCA) exhibits remarkably enhanced electrochemical performances in terms of long-term cyclability, high-rate performance and low polarization. This approach can also be successfully extended to other cathode materials e.g., LiNix Coy Mnz O2 (NCM) and mixed spent NCAs with varied degree of Li loss.


Asunto(s)
Litio , Cloruro de Sodio , Suministros de Energía Eléctrica , Electrodos , Iones
13.
Chemosphere ; 302: 134860, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35551944

RESUMEN

In soils, the speciation transformation of As were inherently related to the behaviors of iron (oxyhydr) oxides. It is poorly understood that the effects of the transformation of iron (oxyhydr) oxides coupled with As speciation transformation during dissimilatory Fe(III) reduction (DIR) involving with humic substances (HS) as electron donor or shuttle in soils with high arsenic geological background. In this study, the relationships between the transformation of iron (oxyhydr)oxides and As speciation transformation were investigated according to the response between continuously As speciation monitoring and iron (oxyhydr) oxides identification during DIR in the soils. The results showed that F4 (arsenic incorporated with amorphous iron (oxyhydr)oxides including ferrihydrite and schwertmannite) and F5 (arsenic incorporated with crystalline iron (oxyhydr)oxides including hematite and magnetite) were the main source and sink for As(III)Dissolved during DIR. During the incubation period, Fe(II) was the dominant driving force for the reduction of As(V) in the water-soil system. The XRD analysis indicated the changes of iron oxides such as ferrihydrite, schwertmannite, hematite and magnetite were closely related to the release and reduction of As, and those iron oxides could play governing roles for As speciation transformation during DIR in soils. Different from the known mechanism in low As concentrations, a limiting effect of As concentration on iron oxides transformation was found in our incubation experiments using soils with high As geological background (∼1000 mg/kg). This work provides new insights for Fe as governing role in As speciation transformation in soils with high arsenic geological background by firstly identifying the corresponding iron (oxyhydr)oxides in operationally defined arsenic speciation incorporated with iron oxides.


Asunto(s)
Arsénico , Arsénico/análisis , Compuestos Férricos/química , Óxido Ferrosoférrico , Hierro/química , Oxidación-Reducción , Óxidos/química , Suelo/química
14.
Small Methods ; 6(6): e2200245, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35460218

RESUMEN

Carbon dots (CDs) are considered as excellent structural regulator for metal oxides (MOs) due to their abundant functional groups, superior dispersibility, and ultrasmall size (<10 nm). Herein, a new approach is proposed to construct porous pomegranate-like MOs/CDs composite based on the CDs-induced in situ growth mechanism of ion adsorption-multipoint surface nucleation-crosslinking agglomeration. The proposed methodology is successfully applied to prepare SnO2 /CDs, Cu2 O/CDs, and Fe2 O3 /CDs composites, respectively, demonstrating its universality to metal oxides. Taking SnO2 /CDs composite as a case study for anode material in lithium-ion batteries, it exhibits high lithium storage capacity, excellent cycling stability, and a special feature of capacity increase upon cycling. This study provides a new idea for the design of metal oxides materials tuned by CDs and broadens the application of CDs in the field of material synthesis.

15.
Sci Total Environ ; 788: 147781, 2021 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-34034182

RESUMEN

The emission characteristics, source apportionment and chemical behavior of volatile organic compounds (VOCs) are important for strategy-making on ozone (O3) and fine particulate matter (PM2.5) control. Based on the continuous observation during four seasons, the seasonal characteristics, chemical reactivity and source apportionment of 116 VOCs species were studied in a typical semi-arid city with no relevant research. The results showed that the annual average concentrations of total volatile organic compounds (TVOCs) in Hohhot was 44.67 ± 46.59 ppbv with the predominant of alkanes and oxygenated volatile organic compounds (OVOCs). The sharp increment of TVOCs were explained by the elevating OVOCs and alkanes in autumn, while alkanes and alkenes in winter. The levels of alkenes presented negative and positive correlations with solar radiation and PM10, respectively. The mixing ratios accounted for 30% (alkanes) and 23% (alkenes and aromatics) of the TVOCs, respectively; while their ozone formation potential (OFP) ~15% and nearly 50% (even 75% in winter), respectively, indicating that the OFP of different VOCs species depends not only on their concentrations but more importantly on their chemical activity in atmosphere. According to the seasonal source apportionment, both the high levels of short-chain alkanes, alkenes and aromatics and the increasing coal sales volume suggested that the combustion sources were the predominant in heating seasons, while solvent uses was extracted as the most predominant during non-heating seasons. In non-heating seasons, the biogenic emission sources, ranking as the second contributor, were significantly higher than heating seasons. Isoprene was the most active biogenic VOCs species, bagging test results showed that deciduous trees were the predominant contributors for isoprene (~99%), while coniferous trees and shrub for monoterpenes (>95%). It will be helpful for understanding the characteristics of VOCs in Chinese national key development areas and informing policy to control semi-arid regional VOCs air pollution.

16.
ACS Appl Mater Interfaces ; 13(17): 19836-19845, 2021 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-33885287

RESUMEN

The rational design of a hollow heterostructure promotes the development of highly durable anode materials for lithium-ion batteries. Herein, carbon-confined MoO2/Sn/NC@NC heterostructured nanotubes evolving from MoO3 nanorods have been successfully synthesized for the first time. In the growth of the Mo/Sn precursor, a peculiar microstructure evolution occurs from solid rods to hollow tubes through a solid-liquid reaction. The MoO2/Sn composite is restricted within the double carbon layer after subsequent annealing and carbonization that distinctly inherits the morphology of the Mo/Sn precursor. The resulting electrode shows good capacities with hardly any attenuation (925.4 mA h g-1 after 100 cycles at 100 mA g-1) and excellent long cycle life (620.1 mA h g-1 after 1000 cycles at 2 A g-1). The MoO2/Sn/NC@NC nanotubes contain the synergistic effect, elaborate core-shell structure, large specific surface areas, and abundant voids. These superiorities not only provide beneficial channels for the electrolyte to fully come into contact with electrode materials and more active sites for redox reactions but also effectively alleviate the volume fluctuation and sustain the electrical connectivity to retain a stable solid-electrolyte interface layer, indeed, bringing about the prominent Li-storage performance. The present study paves a feasible avenue to prepare core-shell structures with high reversible capacity and long-term cycle performance for energy storage devices.

17.
Sci Rep ; 11(1): 5656, 2021 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-33707597

RESUMEN

Negative plant-soil feedbacks lead to the poor growth of Panax notoginseng (Sanqi), a well-known herb in Asia and has been used worldwide, under continuous cropping. However, the key soil parameters causing the replant problem are still unclear. Here we conducted a field experiment after 5-year continuous cropping. Sanqi seedlings were cultivated in 7 plots (1.5 m × 2 m), which were randomly assigned along a survival gradient. In total, 13 important soil parameters were measured to understand their relationship with Sanqi's survival. Pearson correlation analysis showed that 6 soil parameters, including phosphatase, urease, cellulase, bacteria/fungi ratio, available N, and pH, were all correlated with Sanqi's survival rate (P < 0.05). Principal component analysis (PCA) indicated that they explained 61% of the variances based on the first component, with soil pH being closely correlated with other parameters affecting Sanqi's survival. The optimum pH for Sanqi growth is about 6.5, but the mean soil pH in the study area is 5.27 (4.86-5.68), therefore it is possible to ameliorate the poor growth of Sanqi by increasing soil pH. This study may also help to reduce the replant problem of other crops under continuous cropping since it is widespread in agricultural production.

18.
Environ Res ; 193: 110522, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33259785

RESUMEN

The stoichiometric characteristics of water-soluble ions (WSIs) in PM2.5, which can be used as an indicator socioeconomic development level, are mostly depending on the sources and formation mechanism of PM2.5. This work presents the stoichiometric characteristics and socioeconomic linkage of WSIs in PM2.5 from a resource-dependent city. The relationship between NO3-/SO42- and car parc indexes the contribution of mobile emission source. The equivalent ratio of WSIs suggested that aerosol particles were weak acidic due to the deficiency of cations in PM2.5, which was consistent with the average annual pH (6.27) of precipitation in Wuhai in 2015. NH4+ neutralizes PM2.5 acidity in clean and polluted days, while Ca2+ and NH4+ in dust storm days. Furthermore, the PCA analysis indicated the multi-sources pollution characteristics from Spring to Fall, which was related the small build-up area (only 62.30 km2) and the close-set of various industrial enterprises in Wuhai. The ratios of NO2/SO2 may not work effectively to identify the importance of mobile versus stationary pollution emission sources when the heavy emission from the secondary industry, especially the proportion of secondary industry higher than 65% and the ratios of NO2/SO2 lower than 0.4. This work contributes to more effective control strategies for PM2.5 in resource-dependent areas.


Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Contaminantes Atmosféricos/análisis , Ciudades , Monitoreo del Ambiente , Iones/análisis , Material Particulado/análisis , Estaciones del Año , Agua
19.
ACS Appl Mater Interfaces ; 12(41): 46578-46587, 2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-32997942

RESUMEN

Hydrogen as a reliable, sustainable, and efficient energy carrier can effectively alleviate global environmental issues and energy crisis. However, the electrochemical splitting of water for large-scale hydrogen generation is still impeded by the sluggish kinetics of the oxygen evolution reaction (OER) at the anode. Considering the synergistic effect of Co and Fe on the improvement of OER catalytic activity, we prepared Co-Fe hydroxide nanotubes through a facile sacrificial template route. The resultant Co0.8Fe0.2 hydroxide nanotubes exhibited remarkable electrocatalytic performance for OER in 1.0 M KOH, with a small overpotential of about 246 mV at 10 mA cm-2 and a Tafel slope of 53 mV dec-1. The Co0.8Fe0.2P nanotubes were further prepared by a phosphidation treatment, exhibiting excellent OER catalytic performance with an overpotential as low as 240 mV at 10 mA cm-2. Besides, the Co0.8Fe0.2P nanotubes supported on a Ni foam (Co0.8Fe0.2P/NF) used as both positive and negative poles in a two-electrode system achieved a cell voltage of about 1.67 V at 10 mA cm-2 and exhibited outstanding stability. A water splitting system was constructed by Co0.8Fe0.2P/NF electrodes connected with a crystalline silicon solar cell, demonstrating the application as an electrocatalyst.

20.
Sci Rep ; 10(1): 5990, 2020 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-32249789

RESUMEN

A new friction counterpart for carbon fiber-reinforced silicon carbide ceramic-matrix composites (C/SiCs) and zirconia (ZrO2) toughened by magnesia ceramics is proposed. The effects of the C/SiC surface processing parameters friction on the tribological performance are investigated under dry friction and ambient temperature conditions. The wear tests are carried out using the pin-on-disc friction method. Scanning electron microscopy (SEM) on an instrument equipped with an energy dispersive spectroscopy (EDS) is used to observe the surfaces of the pins and discs before and after the application of friction to reveal the wear mechanism. The results show that surface processing influenced the tribological properties of C/SiC significantly. When the pressure is 30 N, the speed is 0.5 m/s, and the C/SiC surface is ground using 1500# sandpaper, the counterpart tribological performance is the best among the samples considered herein. It is found that the retention ability of the counterparts influenced the tribology performance significantly.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...