Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Sci ; 15(26): 9949-9976, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38966383

RESUMEN

Electrocatalysis stands out as a promising avenue for synthesizing high-value products with minimal environmental footprint, aligning with the imperative for sustainable energy solutions. Deep eutectic solvents (DESs), renowned for their eco-friendly, safe, and cost-effective nature, present myriad advantages, including extensive opportunities for material innovation and utilization as reaction media in electrocatalysis. This review initiates with an exposition on the distinctive features of DESs, progressing to explore their applications as solvents in electrocatalyst synthesis and electrocatalysis. Additionally, it offers an insightful analysis of the challenges and prospects inherent in electrocatalysis within DESs. By delving into these aspects comprehensively, this review aims to furnish a nuanced understanding of DESs, thus broadening their horizons in the realm of electrocatalysis and facilitating their expanded application.

2.
Vet Res ; 55(1): 79, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886840

RESUMEN

Porcine deltacoronavirus (PDCoV) is an enteropathogenic coronavirus that has been reported to use various strategies to counter the host antiviral innate immune response. The cGAS-STING signalling pathway plays an important role in antiviral innate immunity. However, it remains unclear whether PDCoV achieves immune evasion by regulating the cGAS-STING pathway. Here, we demonstrated that the nonstructural protein 2 (nsp2) encoded by PDCoV inhibits cGAS-STING-mediated type I and III interferon (IFN) responses via the regulation of porcine STING (pSTING) stability. Mechanistically, ectopically expressed PDCoV nsp2 was found to interact with the N-terminal region of pSTING. Consequently, pSTING was degraded through K48-linked ubiquitination and the proteasomal pathway, leading to the disruption of cGAS-STING signalling. Furthermore, K150 and K236 of pSTING were identified as crucial residues for nsp2-mediated ubiquitination and degradation. In summary, our findings provide a basis for elucidating the immune evasion mechanism of PDCoV and will contribute to the development of targets for anti-coronavirus drugs.


Asunto(s)
Deltacoronavirus , Proteínas no Estructurales Virales , Animales , Porcinos , Proteínas no Estructurales Virales/metabolismo , Proteínas no Estructurales Virales/genética , Deltacoronavirus/genética , Deltacoronavirus/fisiología , Enfermedades de los Porcinos/virología , Enfermedades de los Porcinos/inmunología , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/virología , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/metabolismo , Interferón Tipo I/metabolismo , Interferón Tipo I/genética , Inmunidad Innata , Células HEK293 , Evasión Inmune , Ubiquitinación
3.
Environ Res ; 252(Pt 1): 118720, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38537740

RESUMEN

Bovine mastitis (BM) is mainly caused by bacterial infection that has a highly impact on dairy production, affecting both economic viability and animal well-being. A cross-sectional study was conducted in dairy farms to investigate the prevalence and antimicrobial resistance patterns of bacterial pathogens associated with BM. The analysis revealed that Staphylococcus (49%), Escherichia (16%), Pseudomonas (11%), and Klebsiella (6%) were the primary bacterial pathogens associated with mastitis. A significant proportion of Staphylococcus strains displayed multiple drug resistance. The use of disinfectants is an important conventional measure to control the pathogenic bacteria in the environment. Bacteriophages (Phages), possessing antibacterial properties, are natural green and effective disinfectants. Moreover, they mitigate the risk of generating harmful disinfection byproducts, which are commonly associated with traditional disinfection methods. Based on the primary bacterial pathogens associated with mastitis in the investigation area, a phage cocktail, named SPBC-SJ, containing seven phages capable of lysing S. aureus, E. coli, and P. aeruginosa was formulated. SPBC-SJ exhibited superior bactericidal activity and catharsis effect on pollutants (glass surface) compared to chemical disinfectants. Clinical trials confirmed that the SPBC-SJ-based superimposed disinfection group (phage combined with chemical disinfectants) not only cut down the dosage of disinfectants used, but significantly reduced total bacterial counts on the ground and in the feeding trough of dairy farms. Furthermore, SPBC-SJ significantly reduced the abundance of Staphylococcus and Pseudomonas in the environment of the dairy farm. These findings suggest that phage-based superimposed disinfection is a promising alternative method to combat mastitis pathogens in dairy farms due to its highly efficient and environmentally-friendly properties.


Asunto(s)
Bacteriófagos , Industria Lechera , Desinfección , Mastitis Bovina , Bovinos , Animales , Mastitis Bovina/prevención & control , Mastitis Bovina/microbiología , Desinfección/métodos , Femenino , Estudios Transversales , Desinfectantes/farmacología , Infecciones Bacterianas/prevención & control , Infecciones Bacterianas/veterinaria
4.
J Agric Food Chem ; 72(12): 6651-6659, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38501756

RESUMEN

Deoxynivalenol (DON) is a secondary metabolite of fungi that is harmful to humans and animals. This study examined the protective effects of natural substances, including resveratrol, quercetin, vitamin E, vitamin C, and microbe-derived antioxidants (MA), on both human gastric mucosal cells (GES-1) and pig small intestinal epithelial cells (IPEC-1) when induced by DON. Cells were incubated with active substances for 3 h and then exposed to DON for 24 h. The oxidative stress index, cell cycle, and apoptosis were measured. As compared to cells treated only with DON, pretreatment with active substances improved the balance of the redox status in cells caused by DON. Specifically, quercetin, vitamin E, vitamin C, and MA showed the potential to alleviate the G2 phase cell cycle arrest effect that was induced by DON in both kinds of cells. It was observed that vitamin E and vitamin C can alleviate DON-induced apoptosis and the G2 phase cycle arrest effect mediated via the ATM-Chk 2-Cdc 25C and ATM-P53 signaling pathways in GES-1 cells. In IPEC-1 cells, vitamin C and MA can alleviate both DON-induced apoptosis and the G2 phase cycle arrest effect via the ATM-Chk 2-Cdc 25C signaling pathway. Different bioactive substances utilize different protective mechanisms against DON in interacting with different cells. The proper addition of vitamin E and vitamin C to food can neutralize the toxic effect of DON, while the addition of vitamin C and MA to animal feed can reduce the harm DON does to animals.


Asunto(s)
Apoptosis , Quercetina , Tricotecenos , Humanos , Animales , Porcinos , Quercetina/farmacología , Línea Celular , Antioxidantes/metabolismo , Puntos de Control de la Fase G2 del Ciclo Celular , Ácido Ascórbico/farmacología , Vitamina E , Daño del ADN
5.
J Dairy Sci ; 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38522833

RESUMEN

Bovine mastitis (BM) is a prevalent infectious disease in dairy herds worldwide, resulting in substantial economic losses. Staphylococcus aureus is a major cause of mastitis in animals, and its antibiotic resistance poses challenges for treatment. Recently, there has been a renewed interest in the development of alternative methods to antibiotic therapy, including bacteriophages (phages), for controlling bacterial infections. In this study, 2 lytic phages (designated as JDYN for vB_SauM_JDYN and JDF86 for vB_SauM_JDF86) were isolated from the cattle sewage effluent samples collected from dairy farms in Shanghai. The 2 phages have a broad bactericidal spectrum against Staphylococcus of various origins. Genomic and morphological analyses revealed that the 2 phages belonged to the Myoviridae family. Moreover, JDYN and JDF86 remained stable under a wide range of temperatures or pH and were almost unaffected in chloroform. In this study, we prepared a phage cocktail designated "PHC-1" which consisted of a 1:1:1 ratio of JDYN, JDF86 and SLPW (a previously characterized phage). PHC-1 showed the strongest bacteriolytic effect and the lowest frequency of emergence of bacteriophage insensitive mutants compared with monophages. The bovine mammary epithelial cells (MAC-T cells) and lactating mice mastitis model were used to evaluate the effectiveness of PHC-1 in vitro and in vivo, respectively. The results demonstrated that PHC-1 treatment significantly reduced bacterial load, alleviated inflammatory response, and improved mastitis pathology. Altogether, these results suggest that PHC-1 has the potential to treat S. aureus-induced bovine mastitis and that phage cocktails can combat antibiotic-resistant S. aureus infections.

6.
Arch Virol ; 169(2): 26, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38214770

RESUMEN

Pigeons can be infected with various RNA viruses, and their innate immune system responds to viral infection to establish an antiviral response. Mitochondrial antiviral signaling protein (MAVS), an important adaptor protein in signal transduction, plays a pivotal role in amplifying the innate immune response. In this study, we successfully cloned pigeon MAVS (piMAVS) and performed a bioinformatics analysis. The results showed that the caspase recruitment domain (CARD) and transmembrane (TM) domain are highly conserved in poultry and mammals but poorly conserved in other species. Furthermore, we observed that MAVS expression is upregulated both in pigeons and pigeon embryonic fibroblasts (PEFs) upon RNA virus infection. Overexpression of MAVS resulted in increased levels of ß-interferon (IFN-ß), IFN-stimulated genes (ISGs), and interleukin (ILs) mRNA and inhibited Newcastle disease virus (NDV) replication. We also found that piMAVS and human MAVS (huMAVS) induced stronger expression of IFN-ß and ISGs when compared to chicken MAVS (chMAVS), and this phenomenon was also reflected in the degree of inhibition of NDV replication. Our findings demonstrate that piMAVS plays an important role in repressing viral replication by regulating the activation of the IFN signal pathway in pigeons. This study not only sheds light on the function of piMAVS in innate immunity but also contributes to a more comprehensive understanding of the innate immunity system in poultry. Our data also provide unique insights into the differences in innate immunity between poultry and mammal.


Asunto(s)
Columbidae , Inmunidad Innata , Transducción de Señal , Animales , Humanos , Antivirales , Interferón beta/genética , Interferón beta/metabolismo , Mamíferos , Virus de la Enfermedad de Newcastle
7.
Toxicology ; 501: 153707, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38104654

RESUMEN

Deoxynivalenol (DON) stands among the prevalent mycotoxins, and usually contaminates cereal foods and animal feed, leading to human and animal clinical poisoning symptoms such as abdominal pain, diarrhea, and vomiting. To date, the mechanism of toxicity of DON in different mammalian cells is not fully elucidated. In this study, we explored the detrimental impacts of DON on porcine intestinal epithelial cells (IPEC-1), serving as a representative model for porcine intestinal epithelial cells. After treating cells with DON for 24 h, DON can significantly inhibit the activity of cells, induce the production of reactive oxygen species (ROS), significantly reduce the content of glutathione and the activity of catalase, and increase the activity of superoxide dismutase and malondialdehyde, leading to an imbalance in intracellular redox status. In addition, DON can induce DNA double-strand breaks, and decrease mitochondrial membrane potential. Furthermore, DON can promote the release of Cyt C through changes in mitochondrial permeability through inhibit the expression of B-cell lymphoma 2 (Bcl-2) proteins, leading to apoptosis through the mitochondrial pathway. On the other hand, we found that DON can cause IPEC-1 cells G2 phase cycle arrest. Different with our pervious study, DON induces cell cycle arrest in the G2 phase only by activating the ATM-Chk2-Cdc 25 C pathway, but cannot regulate the cell cycle arrest via the ATM-p53 pathway. These results indicate that DON can induce the same toxic phenotype in different cells, but its toxic mechanism is different. All these provide a rationale for revealing DON induced cytotoxicity and intestinal diseases.


Asunto(s)
Tricotecenos , Proteína p53 Supresora de Tumor , Animales , Porcinos , Humanos , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Tricotecenos/toxicidad , Línea Celular , Apoptosis , Células Epiteliales/metabolismo , Daño del ADN , Mamíferos
8.
Chemistry ; 30(15): e202303391, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38116857

RESUMEN

Surface Enhanced Raman spectroscopy (SERS) is a molecular-specific analytical technique with various applications. Although electromagnetic (EM) and chemical (CM) mechanisms have been proposed to be the main origins of SERS, exploring highly sensitive SERS substrates with well-defined mechanistic pathways remains challenging. Since surface and electronic structures of substrates were crucial for SERS activity, zero-valent transition metals (Fe and Cu) were intercalated into MoO3 to modulate its surface and electronic structures, leading to unexceptional high enhancement factors (1.0×108 and 1.1×1010 for Fe-MoO3 and Cu-MoO3 , respectively) with decent reproducibility and stability. Interestingly, different mechanistic pathways (CM and EM) were proposed for Fe-MoO3 and Cu-MoO3 according to mechanistic investigations. The different mechanisms of Fe-MoO3 and Cu-MoO3 were rationalized by the electronic structures of the intercalated Fe(0) and Cu(0), which modulates the surface and electronic structures of Fe-MoO3 and Cu-MoO3 to differentiate their SERS mechanisms.

9.
ChemSusChem ; 17(7): e202301539, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38109070

RESUMEN

Electrochemical CO2 reduction presents a promising approach for synthesizing fuels and chemical feedstocks using renewable energy sources. Although significant advancements have been made in the design of catalysts for CO2 reduction reaction (CO2RR) in recent years, the linear scaling relationship of key intermediates, selectivity, stability, and economical efficiency are still required to be improved. Rare earth (RE) elements, recognized as pivotal components in various industrial applications, have been widely used in catalysis due to their unique properties such as redox characteristics, orbital structure, oxygen affinity, large ion radius, and electronic configuration. Furthermore, RE elements could effectively modulate the adsorption strength of intermediates and provide abundant metal active sites for CO2RR. Despite their potential, there is still a shortage of comprehensive and systematic analysis of RE elements employed in the design of electrocatalysts of CO2RR. Therefore, the current approaches for the design of RE element-based electrocatalysts and their applications in CO2RR are thoroughly summarized in this review. The review starts by outlining the characteristics of CO2RR and RE elements, followed by a summary of design strategies and synthetic methods for RE element-based electrocatalysts. Finally, an overview of current limitations in research and an outline of the prospects for future investigations are proposed.

10.
Viruses ; 15(12)2023 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-38140609

RESUMEN

In 2009, a novel H1N1 influenza virus caused the first influenza pandemic of the 21st century. Studies have shown that the influenza M gene played important roles in the pathogenicity and transmissibility of the 2009 H1N1 pandemic ((H1N1)pdm09), whilst the underlying mechanism remains unclear. The influenza M gene encodes two proteins, matrix protein 1 and matrix protein 2, which play important roles in viral replication and assembly. In this study, it is found that the M2 protein of the (H1N1)pdm09 virus showed a lower mobility rate than the North America triple-reassortant influenza M2 protein in Polyacrylamide Gel Electrophoresis (PAGE). The site-directed mutations of the amino acids of (H1N1)pdm09 M2 revealed that E79 is responsible for the mobility rate change. Further animal studies showed that the (H1N1)pdm09 containing a single M2-E79K was significantly attenuated compared with the wild-type virus in mice and induced lower proinflammatory cytokines and IFNs in mouse lungs. Further in vitro studies indicated that this mutation also affected NLRP3 inflammasome activation. To reveal the reason why they have different mobility rates, a circular dichroism spectra assay was employed and showed that the two M2 proteins displayed different secondary structures. Overall, our findings suggest that M2 E79 is important for the virus replication and pathogenicity of (H1N1)pdm09 through NLRP3 inflammasome and proinflammatory response.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Humana , Infecciones por Orthomyxoviridae , Animales , Ratones , Humanos , Subtipo H1N1 del Virus de la Influenza A/fisiología , Proteína con Dominio Pirina 3 de la Familia NLR , Virulencia , Inflamasomas
11.
Poult Sci ; 102(10): 102954, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37556982

RESUMEN

Pigeons are considered less susceptible, and display few or no clinical signs to infection with avian influenza virus (AIV). Melanoma differentiation-associated gene 5 (MDA5), an important mediator in innate immunity, has been linked to the virus resistance. In this study, the pigeon MDA5 (piMDA5) was cloned. The bioinformatics analysis showed that the C-terminal domain (CTD) of MDA5 is highly conserved among species while the N-terminal caspase recruitment domain (CARD) is variable. Upon infection with Newcastle diseases virus (NDV) and AIV, piMDA5 was upregulated in both pigeons and pigeon embryonic fibroblasts (PEFs). Further study found that overexpression of piMDA5 mediated the activation of interferons (IFNs) and IFN-stimulated genes (ISGs) while inhibiting NDV replication. Conversely, the knockdown of piMDA5 promoted NDV replication. Additionally, CARD was found to be essential for the activation of IFN-ß by piMDA5. Furthermore, pigeon MDA5, chicken MDA5, and human MDA5 differ in inhibiting viral replication and inducing ISGs expression. These findings suggest that MDA5 contributes to suppressing viral replication by activating the IFN signal pathway in pigeons. This study provides valuable insight into the role of MDA5 in pigeons and a better understanding of the conserved role of MDA5 in innate immunity during evolution.


Asunto(s)
Columbidae , Virus de la Influenza A , Animales , Humanos , Columbidae/genética , Pollos/genética , Inmunidad Innata/genética , Virus de la Enfermedad de Newcastle , Replicación Viral , Antivirales
12.
Chem Commun (Camb) ; 59(52): 8135-8138, 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37309252

RESUMEN

Exfoliation of bulk molybdenum disulfide (MoS2) into few-layered nanosheets is achieved with the assistance of zero-valent transition metal (Co0, Ni0, Cu0) intercalation. The as-prepared MoS2 nanosheets are characterized to consist of 1T- and 2H-phases with an enhanced electrocatalytic hydrogen evolution reaction (HER) activity. This work provides a novel strategy to prepare 2D MoS2 nanosheets using mild reductive reagents, which is expected to avoid the undesired structural damage from conventional chemical exfoliation.

13.
Dev Comp Immunol ; 147: 104758, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37307868

RESUMEN

TANK-binding kinase 1 (TBK1), a noncanonical member of the inhibitor-kappaB kinases (IKKs) family, plays a vital role in regulating type-I interferon (IFN) production in mammals and birds. We cloned pigeon TBK1 (PiTBK1) and conducted bioinformatics analyses to compare the protein homology of TBK1 from different species. Overexpression of PiTBK1 in DF-1 cells induced the activation of IFN-ß, and this activation positively correlated with the dosage of transfected PiTBK1 plasmids. In pigeon embryonic fibroblasts (PEFs) cells, it does the same. And the STK and Ubl domain are essential for IFN-ß activation. Consistent with the previous results, when PiTBK1 expressed more, NDV replication was lower. Our results suggest that PiTBK1 is an important regulator of IFNs and plays a pivotal role in antiviral innate immunity in pigeon.


Asunto(s)
Antivirales , Columbidae , Animales , Inmunidad Innata , Transducción de Señal , Fosforilación , Factor 3 Regulador del Interferón/metabolismo , Mamíferos
14.
Crit Rev Food Sci Nutr ; 63(6): 790-812, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34520302

RESUMEN

Deoxynivalenol, also known as vomitotoxin, is produced by Fusarium, belonging to the group B of the trichothecene family. DON is widely polluted, mainly polluting cereal crops such as wheat, barley, oats, corn and related cereal products, which are closely related to lives of people and animals. At present, there have been articles summarizing DON induced toxicity, biological detoxification and the protective effect of natural products, but there is no systematic summary of this information. In addition to ribosome and endoplasmic reticulum, recent investigations support that mitochondrion is also organelles that DON can damage. DON can't directly act on mitochondria, but can indirectly cause mitochondrial damage and changes through other means. DON can indirectly inhibit mitochondrial biogenesis and mitochondrial electron transport chain activity, ATP production, and mitochondrial transcription and translation. This review will provide the latest progress on mitochondria as the research object, and systematically summarizes all the toxic mechanisms of DON. Here, we discuss DON induced mitochondrial-mediated apoptosis and various mitochondrial toxicity. For the toxicity of DON, many methods have been derived to prevent or reduce the toxicity. Biological detoxification and the antioxidant effect of natural products are potentially effective treatments for DON toxicity.


Asunto(s)
Productos Agrícolas , Grano Comestible , Humanos , Animales , Antioxidantes/farmacología , Mitocondrias , Triticum
15.
Food Chem Toxicol ; 171: 113531, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36427601

RESUMEN

Deoxynivalenol (DON) is a mycotoxin produced by the genus Fusarium and belongs to the trichothecenes group B compound. At present, the mechanism of DON toxicity to mammalian cells is not fully understood. Since the stomach is the first physiological barrier against food contaminants, it is also the first target of exposure to toxins. In this research, we investigated the toxic effects of DON on human gastric mucosal epithelial cells (GES-1) as a model. We found that DON significantly inhibited cell activity, but did not induce ROS production in GES-1 cells. Although DON was unable to induce ROS production, the intracellular "redox homeostasis" was altered. Additionally, DON induced mitochondrial membrane potential decrease but ATP levels increase. DON can induce DNA damage, which in turn regulates apoptosis by regulating mitochondrial permeability by regulating p53 and in turn the Bcl-2 protein family. Furthermore, DON can activate the ATM-chk2-cdc25C and ATM-p53 signaling pathways to induce G2-phase cycle arrest in GES-1 cells. Finally, DON is able to enter the nucleus by simple diffusion, but does not directly target mitochondria. In conclusion, DON is able to enter the nucleus and cause DNA damage, apoptosis and cycle arrest in GES-1 cells. These results provide evidence for DON induced cytotoxicity and gastric disease.


Asunto(s)
Estrés Oxidativo , Proteína p53 Supresora de Tumor , Animales , Humanos , Especies Reactivas de Oxígeno/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Apoptosis , Daño del ADN , Mamíferos
16.
Front Immunol ; 13: 904481, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35677039

RESUMEN

Bats are important hosts for various zoonotic viral diseases. However, they rarely show signs of disease infection with such viruses. As the first line for virus control, the innate immune system of bats attracted our full attention. In this study, the Tadarida brasiliensis MDA5 gene (batMDA5), a major sensor for anti-RNA viral infection, was first cloned, and its biological functions in antiviral innate immunity were identified. Bioinformatics analysis shows that the amino acid sequence of batMDA5 is poorly conserved among species, and it is evolutionarily closer to humans. The mRNA of batMDA5 was significantly upregulated in Newcastle disease virus (NDV), avian influenza virus (AIV), and vesicular stomatitis virus (VSV)-infected bat TB 1 Lu cells. Overexpression of batMDA5 could activate IFNß and inhibit vesicular stomatitis virus (VSV-GFP) replication in TB 1 Lu cells, while knockdown of batMDA5 yielded the opposite result. In addition, we found that the CARD domain was essential for MDA5 to activate IFNß by constructing MDA5 domain mutant plasmids. These results indicated that bat employs a conserved MDA5 gene to trigger anti-RNA virus innate immune response. This study helps understand the biological role of MDA5 in innate immunity during evolution.


Asunto(s)
Quirópteros , Inmunidad Innata , Helicasa Inducida por Interferón IFIH1 , Infecciones por Virus ARN , Animales , Quirópteros/inmunología , Virus de la Influenza A , Helicasa Inducida por Interferón IFIH1/genética , Interferón beta , Infecciones por Virus ARN/inmunología , Virus ARN
17.
Vet Res ; 53(1): 29, 2022 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-35379320

RESUMEN

Interferon regulatory factors (IRFs) play a key role in many aspects of immune response, and IRF1, IRF3, and IRF7 are positive regulators of IFN induction in mammals. However, IRF3, as the most critical regulatory factor in mammals, is naturally absent in birds, which attracts us to study the functions of other members of the avian IRF family. In the present study, we cloned goose IRF1 (GoIRF1) and conducted a series of bioinformatics analyses to compare the protein homology of GoIRF1 with that of IRF1 in other species. The overexpression of GoIRF1 in DF-1 cells induced the activation of IFN-ß, and this activation is independent of the dosage of the transfected GoIRF1 plasmids. The overexpression of GoIRF1 in goose embryonic fibroblasts (GEFs) induced the expression of IFNs, proinflammatory cytokines, and IFN-stimulated genes (ISGs); it also inhibited the replication of green fluorescent protein (GFP)-tagged Newcastle disease virus (NDV) (NDV-GFP) and GFP-tagged vesicular stomatitis virus (VSV) (VSV-GFP). Our results suggest that GoIRF1 is an important regulator of IFNs, proinflammatory cytokines, and ISGs and plays a role in antiviral innate immunity in geese.


Asunto(s)
Gansos , Virus de la Enfermedad de Newcastle , Animales , Inmunidad Innata/genética , Interferón beta/metabolismo , Mamíferos , Virus de la Enfermedad de Newcastle/metabolismo , Replicación Viral/genética
18.
J Food Prot ; 85(3): 484-493, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34855936

RESUMEN

ABSTRACT: The consumption of cheese in the People's Republic of China is increasing rapidly. Little is known about the microbiota, the presence of antibiotic-resistant bacteria, or the distribution of antibiotic resistance genes (ARGs) in commercially produced cheeses sold in China. This information is important for evaluating quality and safety. This study was conducted using 16S rRNA gene sequencing to assess the metagenomics of 15 types of cheese. Fourteen bacterial genera were detected, and Lactococcus, Lactobacillus, and Streptococcus were dominant based on number of sequence reads. Multidrug-resistant lactic acid bacteria (i.e., resistant to two or more types of antibiotic) were isolated from most of the types of cheese. Of these isolates, 100 and 91.7% were resistant to streptomycin and sulfamethoxazole, respectively, and genes involved in acquired resistance to streptomycin (strB) and sulfonamides (sul2) were detected with high frequency. To analyze the distribution of ARGs in the cheeses overall, 309 ARGs from eight categories and nine transposase genes were profiled. A total of 169 ARGs were detected in the 15 cheeses; their occurrence and abundance varied significantly between cheeses. Our study revealed diverse bacteria and ARGs in cheeses sold in China. The risks associated with multidrug resistance among dominant lactic acid bacteria are of great concern.


Asunto(s)
Queso , Animales , Bacterias , Queso/microbiología , China , Farmacorresistencia Microbiana , Humanos , Leche/microbiología , ARN Ribosómico 16S/genética
19.
Dev Comp Immunol ; 127: 104266, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34562530

RESUMEN

Chicken has an impaired innate immune system compared with mammals. Some key innate immune genes, such as Retinoic acid-inducible gene I (RIG-I), Toll like receptor 8 (TLR8), Absent in melanoma 2 (AIM2) and IFN regulatory factor 3 (IRF3), are inactivated or missing due to DNA Insertion, gene partial deletion, or gene total deletion. A predicted N-terminal deleted chicken Cyclic GMP-AMP synthase (chcGAS) gene, which is proven as the most essential cytosolic DNA sensor in other species, be obtained from the GenBank database. The large fragment deletion makes the sequence accuracy and functional integrity of the predicted chcGAS open to dispute. Here, the exact chcGAS gene was first experimentally determined by 5' and 3' rapid amplification of cDNA ends (RACE) PCR, which specifically lacked 83 amino acids in the DNA binding domain. In addition, the conservation and feasibility of cGAS-STING signaling among different species were conducted by bioinformatics to explore the possibility of the existence of the conserved pathway in chickens. The basic characteristics of the chcGAS, such as macroscopic and microscopic distribution patterns of chcGAS have been studied. In order to better research the function of chGAS, a chcGAS knockout chicken cell line has been generated by CRISPR/CAS9. Together, chicken owns an N-terminal deleted cGAS gene, and more experimental evidences are urgently needed to verify the functional integrity of chcGAS.


Asunto(s)
Pollos , Biología Computacional , Animales , Pollos/genética , Pollos/metabolismo , Inmunidad Innata/genética , Factor 3 Regulador del Interferón/metabolismo , Mamíferos , Nucleótidos Cíclicos
20.
Viruses ; 13(12)2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34960604

RESUMEN

Reassortant variant viruses generated between 2009 H1N1 pandemic influenza virus [A(H1N1)pdm09] and endemic swine influenza viruses posed a potential risk to humans. Surprisingly, genetic analysis showed that almost all of these variant viruses contained the M segment from A(H1N1)pdm09, which originated from Eurasian avian-like swine influenza viruses. Studies have shown that the A(H1N1)pdm09 M gene is critical for the transmissibility and pathogenicity of the variant viruses. However, the M gene encodes two proteins, M1 and M2, and which of those plays a more important role in virus pathogenicity remains unknown. In this study, the M1 and M2 genes of A(H1N1)pdm09 were replaced with those of endemic H3N2 swine influenza virus, respectively. The chimeric viruses were rescued and evaluated in vitro and in mice. Both M1 and M2 of H3N2 affected the virus replication in vitro. In mice, the introduction of H3N2 M1 attenuated the chimeric virus, where all the mice survived from the infection, compared with the wild type virus that caused 100 % mortality. However, the chimeric virus containing H3N2 M2 was still virulent to mice, and caused 16.6% mortality, as well as similar body weight loss to the wild type virus infected group. Compared with the wild type virus, the chimeric virus containing H3N2 M1 induced lower levels of inflammatory cytokines and higher levels of anti-inflammatory cytokines, whereas the chimeric virus containing H3N2 M2 induced substantial pro-inflammatory responses, but higher levels of anti-inflammatory cytokines. The study demonstrated that Eurasian avian-like M1 played a more important role than M2 in the pathogenicity of A(H1N1)pdm09 in mice.


Asunto(s)
Subtipo H3N2 del Virus de la Influenza A/metabolismo , Infecciones por Orthomyxoviridae/virología , Proteínas de la Matriz Viral/metabolismo , Proteínas Viroporinas/metabolismo , Animales , Perros , Femenino , Células HEK293 , Humanos , Gripe Humana/virología , Células de Riñón Canino Madin Darby , Ratones , Ratones Endogámicos BALB C , Porcinos , Enfermedades de los Porcinos/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...