Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Sci Total Environ ; 947: 174469, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38972419

RESUMEN

Understanding the transformation process of dissolved organic matter (DOM) in the sewer is imperative for comprehending material circulation and energy flow within the sewer. The machine learning (ML) model provides a feasible way to comprehend and simulate the DOM transformation process in the sewer. In contrast, the model accuracy is limited by data restriction. In this study, a novel framework by integrating generative adversarial network algorithm-machine learning models (GAN-ML) was established to overcome the drawbacks caused by the data restriction in the simulation of the DOM transformation process, and humification index (HIX) was selected as the output variable to evaluate the model performance. Results indicate that the GAN algorithm's virtual dataset could generally enhance the simulation performance of regression models, deep learning models, and ensemble models for the DOM transformation process. The highest prediction accuracy on HIX (R2 of 0.5389 and RMSE of 0.0273) was achieved by the adaptive boosting model which belongs to ensemble models trained by the virtual dataset of 1000 samples. Interpretability analysis revealed that dissolved oxygen (DO) and pH emerge as critical factors warranting attention for the future development of management strategies to regulate the DOM transformation process in sewers. The integrated framework proposed a potential approach for the comprehensive understanding and high-precision simulation of the DOM transformation process, paving the way for advancing sewer management strategy under data restriction.

2.
Water Res ; 259: 121851, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38851110

RESUMEN

Overuse of antibiotics has led to their existence in nitrogen-containing water. The impacts of antibiotics on bio-denitrification and the metabolic response of denitrifiers to antibiotics are unclear. We systematically analyzed the effect of ciprofloxacin (CIP) on bio-denitrification and found that 5 mg/L CIP greatly inhibited denitrification with a model denitrifier (Paracoccus denitrificans). Nitrate reduction decreased by 32.89 % and nitrous oxide emission increased by 75.53 %. The balance analysis of carbon and nitrogen metabolism during denitrification showed that CIP exposure blocked electron transfer and reduced the flow of substrate metabolism used for denitrification. Proteomics results showed that CIP exposure induced denitrifiers to use the pentose phosphate pathway more for substrate metabolism. This caused a substrate preference to generate NADPH to prevent cellular damage rather than NADH for denitrification. Notably, despite denitrifiers having antioxidant defenses, they could not completely prevent oxidative damage caused by CIP exposure. The effect of CIP exposure on denitrifiers after removal of extracellular polymeric substances (EPS) demonstrated that EPS around denitrifiers formed a barrier against CIP. Fluorescence and infrared spectroscopy revealed that the binding effect of proteins in EPS to CIP prevented damage. This study shows that denitrifiers resist antibiotic stress through different intracellular and extracellular defense strategies.


Asunto(s)
Antibacterianos , Ciprofloxacina , Desnitrificación , Ciprofloxacina/farmacología , Antibacterianos/farmacología , Paracoccus denitrificans/metabolismo
3.
World J Gastrointest Surg ; 16(5): 1328-1335, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38817299

RESUMEN

BACKGROUND: Few studies have investigated the expression of GLI1 and PTTG1 in patients undergoing radical surgery for colorectal carcinoma (CRC) and their association with lymph node metastasis (LNM). Therefore, more relevant studies and analyses need to be conducted. AIM: To explore GLI1 and PTTG1 expression in patients undergoing radical surgery for CRC and their correlation with LNM. METHODS: This study selected 103 patients with CRC admitted to our hospital between April 2020 and April 2023. Sample specimens of CRC and adjacent tissues were collected to determine the positive rates and expression levels of GLI1 and PTTG1. The correlation of the two genes with patients' clinicopathological data (e.g., LNM) was explored, and differences in GLI1 and PTTG1 expression between patients with LNM and those without were analyzed. Receiver operating characteristic (ROC) curves were plotted to evaluate the predictive potential of the two genes for LNM in patients with CRC. RESULTS: Significantly higher positive rates and expression levels of GLI1 and PTTG1 were observed in CRC tissue samples compared with adjacent tissues. GLI1 and PTTG1 were strongly linked to LNM in patients undergoing radical surgery for CRC, with higher GLI1 and PTTG1 levels found in patients with LNM than in those without. The areas under the ROC curve of GLI1 and PTTG1 in assessing LNM in patients with CRC were 0.824 and 0.811, respectively. CONCLUSION: GLI1 and PTTG1 expression was upregulated in patients undergoing radical surgery for CRC and are significantly related to LNM in these patients. Moreover, high GLI1 and PTTG1 expression can indicate LNM in patients with CRC undergoing radical surgery. The expression of both genes has certain diagnostic and therapeutic significance.

4.
Water Res ; 258: 121778, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38795549

RESUMEN

Biotechnology for wastewater treatment is mainstream and effective depending upon microbial redox reactions to eliminate diverse contaminants and ensure aquatic ecological health. However, refractory organic nitrogen compounds (RONCs, e.g., nitro-, azo-, amide-, and N-heterocyclic compounds) with complex structures and high toxicity inhibit microbial metabolic activity and limit the transformation of organic nitrogen to inorganic nitrogen. This will eventually result in non-compliance with nitrogen discharge standards. Numerous efforts suggested that applying exogenous electron donors or acceptors, such as solid electrodes (electrostimulation) and limited oxygen (micro-aeration), could potentially regulate microbial redox reactions and catabolic pathways, and facilitate the biotransformation of RONCs. This review provides comprehensive insights into the microbial regulation mechanisms and applications of electrostimulation and micro-aeration strategies to accelerate the biotransformation of RONCs to organic amine (amination) and inorganic ammonia (ammonification), respectively. Furthermore, a promising approach involving in-situ hybrid anaerobic biological units, coupled with electrostimulation and micro-aeration, is proposed towards engineering applications. Finally, employing cutting-edge methods including multi-omics analysis, data science driven machine learning, technology-economic analysis, and life-cycle assessment would contribute to optimizing the process design and engineering implementation. This review offers a fundamental understanding and inspiration for novel research in the enhanced biotechnology towards RONCs elimination.


Asunto(s)
Nitrógeno , Oxidación-Reducción , Aguas Residuales , Aguas Residuales/química , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/metabolismo
5.
Water Res ; 246: 120676, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37806124

RESUMEN

Intelligent control of wastewater treatment plants (WWTPs) has the potential to reduce energy consumption and greenhouse gas emissions significantly. Machine learning (ML) provides a promising solution to handle the increasing amount and complexity of generated data. However, relationships between the features of wastewater datasets are generally inconspicuous, which hinders the application of artificial intelligence (AI) in WWTPs intelligent control. In this study, we develop an automatic framework of feature engineering based on variation sliding layer (VSL) to control the air demand precisely. Results demonstrated that using VSL in classic machine learning, deep learning, and ensemble learning could significantly improve the efficiency of aeration intelligent control in WWTPs. Bayesian regression and ensemble learning achieved the highest accuracy for predicting air demand. The developed models with VSL-ML models were also successfully implemented under the full-scale wastewater treatment plant, showing a 16.12 % reduction in demand compared to conventional aeration control of preset dissolved oxygen (DO) and feedback to the blower. The VSL-ML models showed great potential to be applied for the precision air demand prediction and control. The package as a tripartite library of Python is called wwtpai, which is freely accessible on GitHub and CSDN to remove technical barriers to the application of AI technology in WWTPs.


Asunto(s)
Eliminación de Residuos Líquidos , Purificación del Agua , Eliminación de Residuos Líquidos/métodos , Inteligencia Artificial , Teorema de Bayes , Aprendizaje Automático , Purificación del Agua/métodos
6.
Environ Sci Technol ; 57(43): 16522-16531, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37844031

RESUMEN

Reactive fillers consisting of reduced sulfur and iron species (SFe-ReFs) have received increasing attention in tertiary wastewater treatment for nitrate and phosphate coremoval. However, the existing SFe-ReFs suffer from either low performance (e.g., pyrrhotite and pyrite) or unsatisfactory use in terms of combustible risk and residual nonreactive impurities (e.g., sulfur mixing with natural iron ores). Here, we developed a new type of sulfur-siderite composite ReF (SSCReF) with a structure of natural siderite powders eventually embedded into sulfur. SSCReFs exhibited many excellent properties, including higher mechanical strengths and hardness and especially much poorer ignitability compared to pure sulfur. By using SSCReF to construct packed-bed reactors, the highest denitrification and dephosphorization rates reached 829.70 gN/m3/d (25 wt % siderite) and 36.70 gP/m3/d (75 wt % siderite), respectively. Dephosphorization was demonstrated to be dependent on sulfur-driven denitrification, in which the acid produced from the later process promoted Fe(II) dissolution, which then directly combined with phosphate to form vivianite or further converted into phosphate adsorbents (ferrihydrite, a green rust-like compound). Water flush was an effective way to finally wash out these surface deposited Fe-P compounds, as well as those nonreactive impurities (Si and Al-bearing compounds) detached from SSCReF. Such a highly efficient and safe SSCReF holds considerable application potential in secondary effluent polishing.


Asunto(s)
Desnitrificación , Nitratos , Reactores Biológicos , Azufre , Hierro , Fosfatos , Nitrógeno , Procesos Autotróficos
7.
Bioresour Technol ; 367: 128238, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36334869

RESUMEN

The effect of particle morphology on denitrification performance in element sulfur-based denitrification (ESDeN) packed-bed process is a gap. In this study, three different types of commercial sulfur particles were selected to build the ESDeN reactors. The results showed the reactors filled with rougher sulfur particles took shorter time to reach stable denitrification performance in the start-up stage. The reactors filled with cap-shape sulfur particles received the maximum nitrate removal rate of 849.49 ± 79.29 g N m-3 d-1 at empty bed contact time of 0.50 h, which was 2.34 times higher than that with ball-shape sulfur particles in the steady stage. The superior denitrification performance in the cap-shape particles set linked to its larger effective volumetric surface area (ωe, 1.67 times larger) and to the longer actual hydraulic retention time (AHRT, 1.80 times longer). This study extends the knowledge of the dependency of sulfur particle properties on denitrification performance in ESDeN packed-bed reactor.


Asunto(s)
Reactores Biológicos , Desnitrificación , Azufre , Nitratos , Procesos Autotróficos , Nitrógeno
8.
Water Res ; 226: 119258, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36272196

RESUMEN

Constructed wetlands (CWs) integrated with sulfur autotrophic denitrification to stimulate high-rate nitrogen removal from carbon-limited wastewater holds particular application prospect due to no excessive carbon source addition, high efficiency, and good stability. In this study, we conducted elemental sulfur-based constructed wetland (SCW) and traditional constructed wetland (CW) under different C/N (2, 1, and 0.5) to explore the feasibility and mechanisms for nitrogen removal from low C/N wastewater. Compared with CW, SCW was demonstrated more robust in nitrogen removal in the case of low C/N influent. When the influent C/N control was at 0.5, SCW observed total nitrogen (TN) and nitrate removal efficiency of 69.36 ± 3.96% and 81.71 ± 3.96%, with the corresponding removal rate of 1.18 ± 0.66 and 1.70 ± 0.92 g-N·m-2·d-1, which were 2.11 and 10.03 times of CW, respectively. The nitrate removal rate constant k in the SCW was 1.05, 3.83, and 10.33 times higher than the CW with C/N of 2, 1 and 0.5. Furthermore, 14.40, 54.51, and 79.82% of nitrogen were removed by the sulfur autotrophic denitrification (SAD) in SCW, which also contributed 43.89, 73.68, and 71.70% of sulfate production. Moreover, the combined system of CW-SCW is proved be an efficient operation mode for simultaneously removing total ammonia nitrogen (TAN) and nitrate. In the SCW, the richness of the microbial community was improved and sulfur-oxidizing genera (e.g. Thiobacillus, Sulfurimonas) was selectively enriched, which affect the performance the elemental sulfur-based denitrification process. The nitrate reduction pathway was overwhelmed by denitrification and the dissimilatory nitrate reduction process. These findings offer elemental sulfur-based autotrophic denitrification constructed wetland has excellent potential to enhance nitrogen removal from carbon-limited wastewater.


Asunto(s)
Aguas Residuales , Humedales , Desnitrificación , Nitrógeno/análisis , Nitratos , Reactores Biológicos , Procesos Autotróficos , Azufre , Carbono
9.
Front Endocrinol (Lausanne) ; 13: 929651, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35983517

RESUMEN

Background: The incidence of papillary thyroid carcinoma (PTC) has rapidly increased in recent years. Microwave ablation (MWA) was proposed as an alternative treatment for PTC. This study aimed to investigate the efficacy and safety of MWA by exploring the postoperative pathology results of post-ablation lesions in patients with PTC. Methods: This study retrospectively analyzed data from 12 patients who underwent thyroid surgery after MWA treatment for primary PTC between January 2015 and November 2021 in six hospitals. Results: The average age of the 12 patients (8 female) was 45.3 ± 9.7 years. There was one patient with PTC (size > 1 cm) and 11 patients with micro-PTC (size ≤ 1 cm), of which eight patients had unifocal micro-PTC and three patients had multifocal micro-PTC. A total of 17 tumor foci with mean size of 6.2 ± 2.6 mm were treated by MWA. The median interval time between MWA and surgery was 6.6 months (range: 0.4-21.9 months). Intraoperatively, adherence to the anterior cervical muscle group was observed in three cases (3/12). Upon postoperative pathologic examination, all the post-ablation lesions of the eight unifocal micro-PTC and two multifocal micro-PTC showed no residual carcinomas. Outside the ablation zone, PTCs were detected in three cases, including two of the eight patients with unifocal micro-PTC and one of the three patients with multifocal micro-PTC. Cervical lymph node metastases were detected in seven patients (7/12). Conclusion: MWA was feasible for the treatment of primary unifocal low-risk micro-PTC (T1aN0M0) with good efficacy and safety. However, the use of MWA for treating PTC (size > 1 cm) and multifocal micro-PTC remains controversial.


Asunto(s)
Carcinoma Papilar , Neoplasias de la Tiroides , Adulto , Carcinoma Papilar/patología , Carcinoma Papilar/cirugía , Femenino , Humanos , Microondas/uso terapéutico , Persona de Mediana Edad , Estudios Retrospectivos , Cáncer Papilar Tiroideo/patología , Cáncer Papilar Tiroideo/cirugía , Neoplasias de la Tiroides/patología , Neoplasias de la Tiroides/cirugía
10.
Water Res ; 217: 118433, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35429886

RESUMEN

Constructed wetlands (CWs) integrated with the bioelectrochemical system (BES-CW) to stimulate bio-refractory compounds removal holds particular promise, owing to its inherent greater scale and well-recognized environmentally benign wastewater advanced purification technology. However, the knowledge regarding the feasibility and removal mechanisms, particularly the potential negative effects of biorefractory compounds on nitrogen removal performance for the CWs is far insufficient. This study performed a critical assessment by using BES-CW (ECW) and conventional CW (CW) to investigate the effects of p-Chloronitrobenzene (pCNB) on nitrogen transformations in CWs. The results showed that low concentration (1 mg·L-1) of pCNB would inhibit the ammonia oxidation in CWs, while ECW could improve its tolerance to pCNB to a certain level (8 mg·L-1) due to the high pCNB degradation efficiencies (2.5 times higher than CWs), accordingly, much higher TN and nitrate removal efficiencies were observed in ECWs, 81.71% - 96.82% (TN) higher than CWs, further leading to a lower N2O emission from ECWs than CWs. The main intermediate of pCNB degradation was p-Chloroaniline (pCAN) and the genera Geobacter and Propionimicrobium were consider to be the responsible pCNB degradation bacteria in the present study. However, too high concentration (20 mg·L-1) of pCNB would have a huge impact on ECW and CW, especially microbial biomass. Nevertheless, ECW could improve the 1.87 times higher microbial biomass than CW on the substrate. Accordingly, considerably higher functional gene abundance was observed in ECW. Therefore, the introduction of BES has great potential to ensure CW stability when treating industrial wastewater containing bio-refractory compounds.


Asunto(s)
Nitrógeno , Humedales , Nitrobencenos , Nitrógeno/análisis , Eliminación de Residuos Líquidos , Aguas Residuales
11.
Chemosphere ; 295: 133935, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35149011

RESUMEN

The co-existence of volatile chlorinated hydrocarbons (VCHs) and nitrate pollution in groundwater is prominent, but how nitrate exposure affects weak-electrical stimulated bio-dechlorination activity of VCH is largely unknown. Here, by establishing weak-electrical stimulated trichloroethylene (TCE) dechlorination systems, the influence on TCE dechlorination by exposure to the different concentrations (25-100 mg L-1) of nitrate was investigated. The existence of nitrate in general decreased TCE dechlorination efficiency to varying degrees, and the higher nitrate concentration, the stronger the inhibitory effects, verified by the gradually decreased transcription levels of tceA. Although the TCE dechlorination kinetic rate constant decreased by 36% the most, under all nitrate concentration ranges, TCE could be completely removed within 32 h and no difference in generated metabolites was found, revealing the well-maintained dechlorination activity. This was due to the quickly enriched bio-denitrification activity, which removed nitrate completely within 9 h, and thus relieved the inhibition on TCE dechlorination. The obvious bacterial community structure succession was also observed, from dominating with dechlorination genera (e.g., Acetobacterium, Eubacterium) to dominating with both dechlorination and denitrification genera (e.g., Acidovorax and Brachymonas). The study proposed the great potential for the in situ simultaneous denitrification and dehalogenation in groundwater contaminated with both nitrate and VCHs.


Asunto(s)
Agua Subterránea , Hidrocarburos Clorados , Tricloroetileno , Biodegradación Ambiental , Estimulación Eléctrica , Agua Subterránea/química , Nitratos , Tricloroetileno/química
12.
Environ Res ; 197: 111029, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33744267

RESUMEN

Sulfur autotrophic denitrification (SAD) process, as an alternative to heterotrophic denitrification (HD) filter, receives growing interest in polishing the effluent from secondary sewage treatment. Although individual studies have indicated several advantages of SAD over HD, rare study has compared these two systems under identical condition and by using real secondary effluent. In this study, two small pilot scale filters (SAD and HD) were designed with identical configuration and operated parallelly by feeding the real secondary effluent from a WWTP. The results showed SAD filter can be started up without the addition of soluble electron donor, although the time (14 days) was about 3 times longer than that of HD filter. The nitrate removal rate of SAD filter at HRT of 1.4 h was measured as 0.268 ± 0.047 kg N/(m3∙d). Similar value was observed in HD filter with supplementing 90 mg/L COD. The COD concentration of effluent always kept lower than that of influent in SAD filter but not in HD filter. In addition, SAD filter could maintain a stable denitrification performance without backwash for 15 days, while decline of nitrate removal rate was observed in HD filter just 2 days after stopping the backwash. This different behavior was further confirmed as the SAD filter had a better hydraulic flow pattern. Analysis according to high-throughput 16S rRNA gene-based Illumina MiSeq sequencing clearly showed the microbial community evolution and differentiation among the samples of seed sludge, SAD and HD filters. Finally, the economic assessment was carried out, showing the operation cost of SAD filter was over 50% lower than that of HD filter.


Asunto(s)
Desnitrificación , Hidrodinámica , Reactores Biológicos , Nitratos , Nitrógeno , ARN Ribosómico 16S/genética , Azufre
13.
J Environ Manage ; 287: 112297, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33706088

RESUMEN

Pyridine contamination poses a significant threat to human and environmental health. Due to the presence of nitrogen atom in the pyridine ring, the pi bond electrons are attracted toward it and make difficult for pyridine treatment with biological and chemical methods. In this study, coupling Fenton treatment with different biological process was designed to enhance pyridine biotransformation and further mineralization. After Fenton oxidation process optimized, pretreated pyridine was evaluated under three biological (anaerobic, aerobic and microaerobic) operating conditions. Under optimum Fenton oxidation, pyridine (30-75%) and TOC (5-25%) removal efficiencies were poor. Biological process alone also showed insignificant removal efficiency, particularly anaerobic (pyridine = 8.2%; TOC = 5.3%) culturing condition. However, combining Fenton pretreatment with biological process increased pyridine (93-99%) and TOC (87-93%) removals, suggesting that hydroxyl radical generated during Fenton oxidation enhanced pyridine hydroxylation and further mineralization in the biological (aerobic > microaerobic > anaerobic) process. Intermediates were analyzed with UPLC-MS and showed presence of maleic acid, pyruvic acid, glutaric dialdehyde, succinic semialdehyde and 4-formylamino-butyric acid. High-throughput sequencing analysis also indicated that Proteobacteria (35-43%) followed by Chloroflexi (10.6-24.3%) and Acidobacteria (8.0-29%) were the dominant phyla detected in the three biological treatment conditions. Co-existence of dominant genera under aerobic/microaerobic (Nitrospira > Dokdonella > Caldilinea) and anaerobic (Nitrospira > Caldilinea > Longilinea) systems most probably play significant role in biotransformation of pyridine and its intermediate products. Overall, integrating Fenton pretreatment with different biological process is a promising technology for pyridine treatment, especially the combined system enhanced anaerobic (>10 times) microbial pyridine biotransformation activity.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Biotransformación , Cromatografía Liquida , Humanos , Peróxido de Hidrógeno , Oxidación-Reducción , Piridinas , Espectrometría de Masas en Tándem , Eliminación de Residuos Líquidos , Contaminantes Químicos del Agua/análisis
14.
Bioresour Technol ; 322: 124430, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33383476

RESUMEN

Biochar was utilized to intensify constructed wetland (CW) for further organic and nitrogen removal from secondary wastewater. Four sets of non-aerated biochar amended vertical flow CW (VFCW) were developed to investigate the synergistic effects of biochar and microbes on pollutant removal. Results showed that the average COD and nitrogen removal efficiencies of VFCW1 (with 1% w/w biochar with microbe and plants) achieved 89.1 ± 5.6% and 90.2 ± 3.1% respectively, and their corresponding removal rates of 10.2 ± 0.8 mg-COD/(m3.d) and 3.57 ± 0.3 mg-TN/(m3.d) which were 35 and 52.3% higher than control. The biochar's dissolved organic carbon release in VFCWs indicated that water and acidic media portray the optimum conditions for nitrogen removal. The 16S RNA gene sequencing analysis indicated that in the biochar-amended VFCWs, bacterial phylum Proteobacteria (24.13-51.95%) followed by Chloroflexi (5.64-25.01%), Planctomycetes (8.48-14.43%), Acidobacteria (2.29-11.65%) were abundantly enhanced. Conclusively, incorporating biochar in non-aerated VFCWs is an efficient technique for enhancing nitrogen removal from secondary effluent.


Asunto(s)
Microbiota , Humedales , Carbono , Carbón Orgánico , Desnitrificación , Nitrógeno/análisis , Eliminación de Residuos Líquidos , Aguas Residuales
15.
J Hazard Mater ; 408: 124416, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33158650

RESUMEN

Bioelectrochemical systems (BESs) have been known as a promising technology for accelerating aromatic contaminants degradation and energy recovery. However, most existing studies concentrate on aromatics metabolized through a benzoyl-CoA pathway while those metabolized through other pathways are limited. In this work, resorcinol, a typical aromatic contaminant as well as a key central intermediate (other than benzoyl-CoA) involved in aromatics anaerobic biodegradation, was studied in BESs. Unlike the general impression of the relatively poor organic-to-current performance in the aromatics driven BESs, high efficiencies for resorcinol-fed BESs were observed with a current density and coulombic efficiency of up to 0.26 ± 0.05 mAcm-2 and 74.3 ± 10.7%, respectively. The higher performance likely correlates to the readily fermentable property of resorcinol. Analysis of microbial communities in the biofilm suggests a syntrophic interaction between resorcinol-degrading bacteria (RDB) and anode-respiring bacteria (ARB) was involved in current generation. Additional tests involving the removal of accumulated acetate through fast resorcinol feeding indicates that a mechanism based on direct utilization of resorcinol for current generation may also exist. This study extends the knowledge for the fate of aromatics in BESs and indicates that aromatics entering into the resorcinol metabolic pathway can be treated efficiently with good energy recovery efficiency in BESs.


Asunto(s)
Antagonistas de Receptores de Angiotensina , Fuentes de Energía Bioeléctrica , Inhibidores de la Enzima Convertidora de Angiotensina , Biodegradación Ambiental , Electrodos , Electrones , Resorcinoles
16.
Environ Res ; 191: 110093, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32853662

RESUMEN

Carbon coated stainless-steel (SS) electrode has been suggested to be a powerful composite electrode with high conductivity, excellent biocompatibility and good mechanical strength, which is promising for scaling up the bioelectrochemical systems (BESs). However, the already reported carbon coating methods were independent on the production of SS material. Additional steps and investment of equipment for carbon coating are costly, and the industrialization of these carbon coating processes remains challenging. In this study, we report an industrializable carbon coating approach that was embedded into the production line of the SS wire, which was realized through a wire-drawing process with graphite emulsion as the lubricant and carbon source. We found the slide of SS wire through the dies was essential for the graphite coating in terms of loading amount and stability. When the graphite coated SS wire was prepared as the anode and operated in a BESs, the current density reached 1.761 ± 0.231 mA cm-2, which was 20 times higher than that without graphite coating. Biomass analysis was then conducted, confirming the superior bioelectrochemical performance was attributed to the improvement of biocompatibility by the graphite coating layer. Furthermore, graphite coating by the wire-drawing process was systematically compared with the existing methods, which showed a comparable or even better bioelectrochemical performance but with extremely low cost (0.036 $·m-2) and seconds level of the time consumption. Overall, this study offers a cost-effective and industrializable approach to preparing graphite coated SS electrode, which may open up great opportunities to promote the development of BESs at large scale.


Asunto(s)
Fuentes de Energía Bioeléctrica , Grafito , Electrodos , Lubricantes , Acero Inoxidable
17.
Environ Res ; 186: 109522, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32325297

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are regarded as priority pollutants owing to their toxic, mutagenic and carcinogenic characteristics. Perylene is a kind of 5-ring PAH with biological toxicity, and classified as a class III carcinogen by the World Health Organization (WHO). Nowadays, some of its derivatives are often used as industrial pigments. Hence, urgent attention is highly needed to develop new and improved techniques for PAHs and their derivatives removal from the environment. In this study, Fenton oxidation process was hybridized with the biological (anaerobic and aerobic) treatments for the removal of perylene pigment from wastewater. The experiments were carried out by setting Fenton treatment system before and between the biological treatments. The biological results showed that COD removal efficiency reached 60% during 24 h HRT with an effluent COD concentration of 1567.78 mg/L. After the HRT increased to 48 h, the COD removal efficiency was slightly increased (67.9%). However, after combining Fenton treatment with biological treatment (Anaerobic-Fenton-Aerobic), the results revealed over 85% COD removal efficiency and the effluent concentration less than 600 mg/L which was selected as the better treatment configuration for the biological and chemical combined system. The microbial community analysis of activated sludge was carried out with high-throughput Illumina sequencing platform and results showed that Pseudomonas, Citrobacter and Methylocapsa were found to be the dominant genera detected in aerobic and anaerobic reactors. These dominant bacteria depicted that the community composition of the reactors for treating perylene pigments wastewater were similar to that of the soil contaminated by PAHs and the activated sludge from treating PAHs wastewater. Economic analysis results revealed that the reagent cost was relatively cheap, amounting to 10.64 yuan per kilogram COD. This study vividly demonstrated that combining Fenton treatment with biological treatment was efficient and cost-effective.


Asunto(s)
Perileno , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Hidrocarburos Policíclicos Aromáticos/análisis , Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Aguas Residuales
18.
Environ Sci Ecotechnol ; 3: 100050, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36159603

RESUMEN

Bioelectrochemical systems (BESs) have been studied extensively during the past decades owing primarily to their versatility and potential in addressing the water-energy-resource nexus. In stark contrast to the significant advancements that have been made in developing innovative processes for pollution control and bioresource/bioenergy recovery, minimal progress has been achieved in demonstrating the feasibility of BESs in scaled-up applications. This lack of scaled-up demonstration could be ascribed to the absence of suitable electrode modules (EMs) engineered for large-scale application. In this study, we report a scalable composite-engineered EM (total volume of 1 m3), fabricated using graphite-coated stainless steel and carbon felt, that allows integrating BESs into mainstream wastewater treatment technologies. The cost-effectiveness and easy scalability of this EM provides a viable and clear path to facilitate the transition between the success of the lab studies and applications of BESs to solve multiple pressing environmental issues at full-scale.

19.
Front Oncol ; 9: 392, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31157168

RESUMEN

Hepatocellular carcinoma (HCC) is the leading cause of cancer-related deaths worldwide. Despite advances in the diagnosis and treatment of HCC, incidence, and mortality continue to rise. For accurate diagnosis and treatment of HCC, there is an urgent need to precisely understand the molecular mechanisms underlying HCC tumorigenesis and progression. Accumulating evidence showed that circRNAs, which are normally produced by scrambling of exons at the splicing process, are recognized as a novel class of endogenous noncoding RNA, which have microRNA sponging properties. In this study, we aim to investigate the circRNA-100338 mediated downstream pathway, and evaluate its association with clinicopathological parameters. Integrated analysis of circRNA-100338, miR-141-3p, and target genes revealed that RHEB, a key regulator in mTOR signaling pathway, was the target of miR-141-3p in hepatitis B-related HCC. CircRNA-100338 regulates the activity of mTOR signaling pathway in vitro. IHC analysis revealed that mTOR signaling pathway was more active in HCC tissues with elevated circRNA-100338 expression. These results indicated that circRNA-100338 could regulate mTOR signaling pathway through circRNA-100338/miR-141-3p/RHEB axis. Finally, correlation analysis of RHEB and EIF5 expression with clinicopathological parameters of HCC patients revealed that the circRNA-100338, RHEB, and EIF5 were indicators of poor prognosis in hepatitis B-related HCC. In conclusion, elevated circRNA-100338 activates mTOR signaling pathway in HCC via circRNA-100338/miR-141-3p/RHEB axis and associates with poor prognosis of hepatitis B-related HCC patients.

20.
J Exp Med ; 216(4): 884-899, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30898894

RESUMEN

Current models propose that group 2 innate lymphoid cells (ILC2s) are generated in the bone marrow. Here, we demonstrate that subsets of these cells can differentiate from multipotent progenitors and committed T cell precursors in the thymus, both in vivo and in vitro. These thymic ILC2s exit the thymus, circulate in the blood, and home to peripheral tissues. Ablation of E protein transcription factors greatly promotes the ILC fate while impairing B and T cell development. Consistently, a transcriptional network centered on the ZBTB16 transcription factor and IL-4 signaling pathway is highly up-regulated due to E protein deficiency. Our results show that ILC2 can still arise from what are normally considered to be committed T cell precursors, and that this alternative cell fate is restrained by high levels of E protein activity in these cells. Thymus-derived lung ILC2s of E protein-deficient mice show different transcriptomes, proliferative properties, and cytokine responses from wild-type counterparts, suggesting potentially distinct functions.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular/fisiología , Células Precursoras de Linfocitos T/metabolismo , Factor de Transcripción 4/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Línea Celular , Interleucina-4/metabolismo , Pulmón/citología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Desnudos , Proteína de la Leucemia Promielocítica con Dedos de Zinc/metabolismo , Timo/citología , Factor de Transcripción 4/genética , Transcripción Genética , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...