Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Asunto principal
Intervalo de año de publicación
1.
Phys Rev E ; 109(1-1): 014311, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38366511

RESUMEN

Source location in quantum networks is a critical area of research with profound implications for cutting-edge fields such as quantum state tomography, quantum computing, and quantum communication. In this study, we present groundbreaking research on the technique and theory of source location in Szegedy's quantum networks. We develop a linear system evolution model for a Szegedy's quantum network system using matrix vectorization techniques. Subsequently, we propose a highly precise and robust source-location algorithm based on compressed sensing specifically tailored for Szegedy's quantum network. To validate the effectiveness and feasibility of our algorithm, we conduct numerical simulations on various model and real networks, yielding compelling results. These findings underscore the potential of our approach in practical applications.

2.
Chaos ; 33(8)2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37549113

RESUMEN

Epidemics pose a significant threat to societal development. Accurately and swiftly identifying the source of an outbreak is crucial for controlling the spread of an epidemic and minimizing its impact. However, existing research on locating epidemic sources often overlooks the fact that epidemics have an incubation period and fails to consider social behaviors like self-isolation during the spread of the epidemic. In this study, we first take into account isolation behavior and introduce the Susceptible-Exposed-Infected-Recovered (SEIR) propagation model to simulate the spread of epidemics. As the epidemic reaches a certain threshold, government agencies or hospitals will report the IDs of some infected individuals and the time when symptoms first appear. The reported individuals, along with their first and second-order neighbors, are then isolated. Using the moment of symptom onset reported by the isolated individuals, we propose a node-level classification method and subsequently develop the node-level-based source identification (NLSI) algorithm. Extensive experiments demonstrate that the NLSI algorithm is capable of solving the source identification problem for single and multiple sources under the SEIR propagation model. We find that the source identification accuracy is higher when the infection rate is lower, and a sparse network structure is beneficial to source localization. Furthermore, we discover that the length of the isolation period has little impact on source localization, while the length of the incubation period significantly affects the accuracy of source localization. This research offers a novel approach for identifying the origin of the epidemic associated with our defined SEIR model.


Asunto(s)
Epidemias , Humanos , Brotes de Enfermedades , Susceptibilidad a Enfermedades , Algoritmos
3.
Sci Rep ; 13(1): 5692, 2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37029261

RESUMEN

We study locating propagation sources in complex networks. We proposed an multi-source location algorithm for different propagation dynamics by using sparse observations. Without knowing the propagation dynamics and any dynamic parameters, we can calculate node centrality based on the character that positive correlation between inform time of nodes and geodesic distance between nodes and sources. The algorithm is robust and have high location accuracy for any number of sources. We study locatability of the proposed source location algorithm and present a corresponding strategy to select observer nodes based on greedy algorithm. All simulations on both model and real-world networks proved the feasibility and validity of this algorithm.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA