Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 358
Filtrar
1.
Cancer Biol Ther ; 25(1): 2402588, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-39286953

RESUMEN

Death receptor-mediated extrinsic apoptosis system had been developed as a promising therapeutic strategy in clinical oncology, such as TRAIL therapy. However, multiple studies have demonstrated that TRAIL resistance is the biggest problem for disappointing clinical trials despite preclinical success. Targeting cellular FLICE inhibitory protein (cFLIP) is one strategy of combinatorial therapies to overcome resistance to DR-mediated apoptosis due to its negative regulator of extrinsic apoptosis. E × 527 (Selisistat) is a specific inhibitor of SIRT1 activity with safe and well tolerance in clinical trials. Here, we show that E × 527 could strengthen significantly activation of rhFasL-mediated apoptotic signaling pathway and increased apoptotic rate of T leukemia cells with high expression of cFLIP. Mechanically, Inhibition of SIRT1 by E × 527 increased polyubiquitination level of cFLIP via increasing acetylation of Ku70, which could promote proteosomal degradation of cFLIP protein. It implied that combinatorial therapies of E × 527 plus TRAIL may have a potential as a novel clinical application for TRAIL-resistant hematologic malignancies.


Asunto(s)
Apoptosis , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD , Sirtuina 1 , Ligando Inductor de Apoptosis Relacionado con TNF , Humanos , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/metabolismo , Apoptosis/efectos de los fármacos , Sirtuina 1/metabolismo , Sirtuina 1/antagonistas & inhibidores , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Leucemia de Células T/tratamiento farmacológico , Leucemia de Células T/metabolismo , Leucemia de Células T/patología , Carbazoles/farmacología , Línea Celular Tumoral , Regulación hacia Abajo/efectos de los fármacos , Autoantígeno Ku/metabolismo , Animales , Transducción de Señal/efectos de los fármacos , Ratones , Azocinas , Compuestos de Bencidrilo
2.
J Colloid Interface Sci ; 678(Pt C): 506-514, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39305618

RESUMEN

Electrocatalytic CO2 reduction reaction (CO2RR) is a process in which CO2 is reduced to high-value-added C1 and C2 energy sources, particularly ethylene (C2H4), thereby supporting carbon-neutral recycling with minimal consumption. This makes it a promising technology with significant potential. Nevertheless, the low selectivity for C2H4 remains a significant challenge in practical applications. In this paper, a strategy based on Cu-Sn bimetallic catalysts is proposed to improve the selectivity of electrocatalytic conversion of CO2 to C2H4 over Cu-based catalysts. The experimental results show that the Faradaic efficiency (FE) of C2H4 can reach up to 48.74 %, and the FE of C2 product reaches 60 %, at which time the local current density is 11.99 mA/cm2. Compared with pure Cu catalyst, the FE and local current density of C2H4 increased by 55.27 % and 35.33 %, respectively. Moreover, the FE of C2H4 remained above 40 % after 8 h over Cu10-Sn catalyst. The addition of Sn facilitates the transfer of local electrons from Cu to Sn, stabilizes the *CO intermediate, promotes CC coupling, significantly lowers the reaction energy barrier, and enables highly efficient CO2RR catalysis for C2H4 production.

3.
Nitric Oxide ; 2024 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-39313019

RESUMEN

Four isomeric nitrosyl ruthenium complexes [RuCl(2mqn)(Val)(NO)] (1-4) were prepared (2mqn, 2-methyl-8-hydroxyquinoline; Val, L-valine) and characterized by 1H NMR, 13C NMR, absorption spectrum, electrospray ionization mass spectrometry, and X-ray crystal diffraction. Time-resolved FT-IR and fluorescence spectroscopy were used to monitor photo-induced NO release in solution, while NO released in living cells was imaged using a selective fluorescent probe. The isomeric complexes showed different levels of cytotoxicity against HeLa cells, and slightly photo-enhanced anti-proliferative activity was observed. The isomeric complexes 1-4 inhibited the growth of HeLa cells by inducing apoptosis and promoted cell cycle arrest in the S phase. Furthermore, they showed relatively lower cytotoxicity against the human liver cell line HL-7702. The different spatial configurations of the complexes is close related with the selective binding of the isomeric complexes with serum albumin, which provide insight into the potential applications of the nitrosyl ruthenium complexes.

4.
Adv Sci (Weinh) ; : e2408329, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39206774

RESUMEN

The discovery of polar metal opens the door to incorporating electric polarization into electronics with the potential to invigorate next-generation multifunctional electronic devices. Especially, electric polarization can be induced by geometric design in non-polar perovskite oxides. Here, the epitaxial strain exerted on the deposited single-crystalline NdNiO3 thin films is systematically varied in both sign and amplitude by choosing substrates with different lattice mismatch. The pseudocubic NdNiO3(111) film, which is non-polar in its bulk state, is induced to be polar under both compressive and tensile strain. The fine-tuning of epitaxial strain is realized by continuously varying the film thickness using the "thickness-wedge" growth technique, and from the elucidated thickness dependence, the electric polarization and metallicity can be further optimized. Moreover, transitioning from isotropic to anisotropic epitaxial strain gives rise to an ideal polar metal state in the pseudocubic NdNiO3(102) film on an orthorhombic substrate, achieving a remarkably low resistivity of 173 µΩ cm at room temperature. The metal-insulator transition in NdNiO3 is completely suppressed and the polar metal state becomes the ground state at all temperatures. These results demonstrate alluring possibilities of induction and manipulation of both electric polarization and electric transport properties in functional perovskite oxides by epitaxial strain engineering.

5.
J Plant Res ; 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39198337

RESUMEN

Soil salinization has been considered as a major environmental threat to plant growth. Different types of salt in saline soil have different effects on germination and seedling growth. Effect of NaCl on germination and seedling establishment in Suaeda liaotungensis have been reported, but its response to alkali stress remains unclear. Our results showed that brown seeds had higher germination rate, however, black seeds had higher germination recovery percentage under alkali stress. Na2CO3 had stronger inhibitory effect on germination and seedling growth than NaHCO3. As the concentration of alkali stress increased, the ROS level of brown seeds gradually ascended, while that of black seeds decreased first and then ascended. MDA content of dimorphic seeds significantly increased under alkali stress. The trend of SOD, POD and CAT activity between dimorphic seeds was similar under the same type of alkali stress. Alkali stress enhanced proline content of dimorphic seeds, and dimorphic seeds in NaHCO3 solution had higher proline content than Na2CO3 solution. Moreover, radicle and shoot tolerance indexes of seedlings in NaHCO3 solution were significantly higher than that of Na2CO3 solution. Under strong alkali stress, seedlings in NaHCO3 solution had significantly lower ROS level and MDA content as well as higher antioxidant enzyme activity than Na2CO3 solution. This study comprehensively compared the morphological and physiological characteristics in germination and seedlings to better reveal the saline-alkali tolerance mechanisms in S. liaotungensis.

6.
Nature ; 632(8024): 301-306, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39048825

RESUMEN

Molecule-based selective contacts have become a crucial component to ensure high-efficiency inverted perovskite solar cells1-5. These molecules always consist of a conjugated core with heteroatom substitution to render the desirable carrier-transport capability6-9. So far, the design of successful conjugation cores has been limited to two N-substituted π-conjugated structures, carbazole and triphenylamine, with molecular optimization evolving around their derivatives2,5,10-12. However, further improvement of the device longevity has been hampered by the concomitant limitations of the molecular stability induced by such heteroatom-substituted structures13,14. A more robust molecular contact without sacrificing the electronic properties is in urgent demand, but remains a challenge. Here we report a peri-fused polyaromatic core structure without heteroatom substitution that yields superior carrier transport and selectivity over conventional heteroatom-substituted core structures. This core structure produced a relatively chemically inert and structurally rigid molecular contact, which considerably improved the performance of perovskite solar cells in terms of both efficiency and durability. The champion device showed an efficiency up to 26.1% with greatly improved longevity under different accelerated-ageing tests.

7.
Front Plant Sci ; 15: 1354141, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38919815

RESUMEN

Suaeda glauca Bunge produces dimorphic seeds on the same plant, with brown seeds displaying non-dormant characteristics and black seeds exhibiting intermediate physiological dormancy traits. Previous studies have shown that black seeds have a very low germination rate under natural conditions, but exogenous GA3 effectively enhanced the germination rate of black seeds. However, the physiological and molecular mechanisms underlying the effects of GA3 on S. glauca black seeds are still unclear. In this study, transcriptomic profiles of seeds at different germination stages with and without GA3 treatment were analyzed and compared, and the TTF, H2O2, O2 -, starch, and soluble sugar contents of the corresponding seed samples were determined. The results indicated that exogenous GA3 treatment significantly increased seed vigor, H2O2, and O2 - contents but decreased starch and soluble sugar contents of S. glauca black seeds during seed dormancy release. RNA-seq results showed that a total of 1136 DEGs were identified in three comparison groups and were involved mainly in plant hormone signal transduction, diterpenoid biosynthesis, flavonoid biosynthesis, phenylpropanoid biosynthesis, and carbohydrate metabolism pathway. Among them, the DEGs related to diterpenoid biosynthesis (SgGA3ox1, SgKAO and SgGA2ox8) and ABA signal transduction (SgPP2Cs) could play important roles during seed dormancy release. Most genes involved in phenylpropanoid biosynthesis were activated under GA3 treatment conditions, especially many SgPER genes encoding peroxidase. In addition, exogenous GA3 treatment also significantly enhanced the expression of genes involved in flavonoid synthesis, which might be beneficial to seed dormancy release. In accordance with the decline in starch and soluble sugar contents, 15 genes involved in carbohydrate metabolism were significantly up-regulated during GA3-induced dormancy release, such as SgBAM, SgHXK2, and SgAGLU, etc. In a word, exogenous GA3 effectively increased the germination rate and seed vigor of S. glauca black seeds by mediating the metabolic process or signal transduction of plant hormones, phenylpropanoid and flavonoid biosynthesis, and carbohydrate metabolism processes. Our results provide novel insights into the transcriptional regulation mechanism of exogenous GA3 on the dormancy release of S. glauca black seeds. The candidate genes identified in this study may be further studied and used to enrich our knowledge of seed dormancy and germination.

8.
MedComm (2020) ; 5(7): e619, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38938286

RESUMEN

Studies on the associations of blood pressure (BP) and the risk of venous thromboembolism (VTE) had been performed neither among pregnant women nor in Chinese population. This study included participants of pregnant women from a retrospective multicenter cohort, between May 2020 and April 2023. Systolic BP (SBP) and diastolic BP (DBP) of the participants were measured in the third trimester. The incidences of VTE (including deep venous thrombosis and/or pulmonary embolism) at 42 days postpartum were followed. With regards to SBP, pregnant women in the Q1 (≤114 mmHg), Q2 (115-122 mmHg), and Q4 group (≥131 mmHg) had increased risk of VTE than those in Q3 group (123-130 mmHg), with ORs 4.48 [1.69, 11.85], 3.52 [1.30, 9.59], and 3.17 [1.12, 8.99], respectively. Compared with pregnant women with the Q4 of DBP (≥85 mmHg), women of Q1 (≤71 mmHg) were found to have elevated risk of VTE (OR 2.73 [1.25, 5.96]). A one standard deviation decrease of DBP (9 mmHg) was related with 37% elevated risk of VTE (OR 1.37 [1.05, 1.79]). This study demonstrated a U-shaped association of SBP in the third trimester and VTE postpartum and inverse association of DBP in the third trimester and VTE postpartum.

9.
Spectrochim Acta A Mol Biomol Spectrosc ; 320: 124603, 2024 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-38878720

RESUMEN

Iron-sulfur cluster conversion and nitrosyl modification are involved in regulating their functions and play critical roles in signaling for biological systems. Hereby, the photo-induced dynamic process of (Me4N)2[Fe2S2(NO)4] was monitored using time-resolved electron paramagnetic resonance (EPR) spectra, MS spectra and cellular imaging methods. Photo-irradiation and the solvent affect the reaction rates and products. Spectroscopic and kinetic studies have shown that the process involves at least three intermediates: spin-trapped NO free radical species with a gav at 2.040, and two other iron nitrosyl species, dinitrosyl iron units (DNICs) and mononitrosyl iron units (MNICs) with gav values at 2.031 and 2.024, respectively. Moreover, the [Fe2S2(NO)4]2- cluster could bind with ferritin and decompose gradually, and a binding state of dinitrosyl iron coordinated with Cys102 of the recombinant human heavy chain ferritin (rHuHF) was finally formed. This study provides insight into the photodynamic mechanism of nitrosyl iron - sulfur clusters to improve the understanding of physiological activity.


Asunto(s)
Hierro , Humanos , Espectroscopía de Resonancia por Spin del Electrón , Hierro/química , Hierro/metabolismo , Óxidos de Nitrógeno/química , Óxidos de Nitrógeno/metabolismo , Unión Proteica , Cinética , Proteínas Hierro-Azufre/metabolismo , Proteínas Hierro-Azufre/química , Azufre/química , Azufre/metabolismo , Ferritinas/química , Ferritinas/metabolismo , Luz
10.
J Plant Physiol ; 300: 154297, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38945071

RESUMEN

Programmed cell death (PCD) is a genetically regulated process of cell suicide essential for plant development. The 'malate valve' is a mechanism that ensures redox balance across different subcellular compartments. In broccoli, the BomMDH1 gene encodes malate dehydrogenase in mitochondria, a critical enzyme in the 'malate circulation' pathway. This study investigates the functional role of BomMDH1 in malate (MA)-induced apoptosis in bright yellow-2 (BY-2) suspension cells. Findings revealed that transgenic cells overexpressing BomMDH1 showed enhanced viability under MA-induced oxidative stress compared to wild-type (WT) cells. Overexpression of BomMDH1 also reduced levels of reactive oxygen species (ROS), hydrogen peroxide (H2O2), and malondialdehyde (MDA), while increasing the expression of antioxidant enzyme genes such as NtAPX, NtAOX1a, NtSOD, and NtMDHAR. Additionally, treatment with salicylhydroxamic acid (SHAM), a characteristic inhibitor of mitochondrial respiration, further improved the anti-apoptotic activity of BY-2 cells. Overall, these results highlighted the function of the BomMDH1 gene and the potential of SHAM treatment in mitigating oxidative stress in BY-2 suspension cells.


Asunto(s)
Malatos , Nicotiana , Estrés Oxidativo , Especies Reactivas de Oxígeno , Estrés Oxidativo/efectos de los fármacos , Malatos/metabolismo , Nicotiana/genética , Nicotiana/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Apoptosis/efectos de los fármacos , Peróxido de Hidrógeno/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Malato Deshidrogenasa/metabolismo , Malato Deshidrogenasa/genética , Mitocondrias/metabolismo , Malondialdehído/metabolismo , Regulación de la Expresión Génica de las Plantas
11.
Pestic Biochem Physiol ; 202: 105932, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38879298

RESUMEN

The marine antifungal peptide epinecidin-1 (EPI) have been shown to inhibit Botrytis cinerea growth, while the molecular mechanism have not been explored based on omics technology. This study aimed to investigate the molecular mechanism of EPI against B. cinerea by transcriptome technology. Our findings indicated that a total of 1671 differentially expressed genes (DEGs) were detected in the mycelium of B. cinerea treated with 12.5 µmol/L EPI for 3 h, including 773 up-regulated genes and 898 down-regulated genes. Cluster analysis showed that DEGs (including steroid biosynthesis, (unsaturated) fatty acid biosynthesis) related to cell membrane metabolism were significantly down-regulated, and almost all DEGs involved in DNA replication were significantly inhibited. In addition, it also induced the activation of stress-related pathways, such as the antioxidant system, ATP-binding cassette transporter (ABC) and MAPK signaling pathways, and interfered with the tricarboxylic acid (TCA) cycle and oxidative phosphorylation pathways related to mitochondrial function. The decrease of mitochondrial related enzyme activities (succinate dehydrogenase, malate dehydrogenase and adenosine triphosphatase), the decrease of mitochondrial membrane potential and the increase content of hydrogen peroxide further confirmed that EPI treatment may lead to mitochondrial dysfunction and oxidative stress. Based on this, we speculated that EPI may impede the growth of B. cinerea through its influence on gene expression, and may lead to mitochondrial dysfunction and oxidative stress.


Asunto(s)
Antifúngicos , Péptidos Catiónicos Antimicrobianos , Botrytis , Transcriptoma , Transcriptoma/fisiología , Antifúngicos/metabolismo , Péptidos Catiónicos Antimicrobianos/toxicidad , Botrytis/efectos de los fármacos , Botrytis/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Peróxido de Hidrógeno , Expresión Génica , Transportadoras de Casetes de Unión a ATP/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos , Mitocondrias , Estrés Oxidativo
12.
Proc Natl Acad Sci U S A ; 121(19): e2402550121, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38691590

RESUMEN

Earlier sum frequency generation (SFG) experiments involve one infrared and one visible laser, and a measurement of the intensity of the response, yielding data on the surface sensitive properties of the sample. Recently, both the real and imaginary components of the susceptibility were measured in two different sets of experiments. In one set, a broadband infrared laser was used, permitting observations at very short times, while in another set the infrared laser was narrowband, permitting higher spectral resolution. The differences in the spectrum obtained by the two will be most evident in studying narrow absorption bands, e.g., the band due to dangling OH bonds at a water interface. The direct comparisons in the integrated amplitude (sum rule) of the imaginary part of the dangling OH bond region differ by a factor of 3. Due to variations in experimental setup and data processing, corrections were made for the quartz reference, Fresnel factors, and the incident visible laser wavelength. After the corrections, the agreement differs now by the factors of 1.1 within broadband and narrowband groups and the two groups now differ by a factor of 1.5. The 1.5 factor may arise from the extra heating of the more powerful broadband laser system on the water surface. The convolution from the narrowband SFG spectrum to the broadband SFG spectrum is also investigated and it does not affect the sum rule. Theory and narrowband experiments are compared using the sum rule and agree to a factor of 1.3 with no adjustable parameters.

13.
Am J Cardiovasc Drugs ; 24(4): 557-568, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38782884

RESUMEN

PURPOSE: The objective of this investigation is to examine the benefits and potential risks of these drugs in individuals by varying baseline low-density lipoprotein cholesterol (LDL-C) values, utilizing the concept of the number needed to treat (NNT). METHODS: We extensively searched electronic databases, such as PubMed, EMBASE, Cochrane, and Web of Science, up to 6 August 2023. Baseline LDL-C values were stratified into four categories: < 100, 100-129, 130-159, and ≥ 160 mg/dL. Risk ratios (RRs) and NNT values were computed. RESULTS: This analysis incorporated data from 46 randomized controlled trials (RCTs), encompassing a total of 237,870 participants. The meta-regression analysis demonstrated an incremental diminishing risk of major adverse cardiovascular events (MACE) with increasing baseline LDL-C values. Statins exhibited a significant reduction in MACE [number needed to treat to benefit (NNTB) 31, 95% confidence interval (CI) 25-37], but this effect was observed only in individuals with baseline LDL-C values of 100 mg/dL or higher. Ezetimibe and PCSK9 inhibitors also were effective in reducing MACE (NNTB 18, 95% CI 11-41, and NNTB 18, 95% CI 16-24). Notably, the safety outcomes of statins and ezetimibe did not reach statistical significance, while the incidence of injection-site reactions with PCSK9 inhibitors was statistically significant [number needed to treat to harm (NNTH) 41, 95% CI 80-26]. CONCLUSION: Statins, ezetimibe, and PCSK9 inhibitors demonstrated a substantial capacity to reduce MACE, particularly among individuals whose baseline LDL-C values were relatively higher. The NNT visually demonstrates the gradient between baseline LDL-C and cardiovascular disease (CVD) risk. SYSTEMATIC REVIEW REGISTRATION: Registration: PROSPERO identifier number: CRD42023458630.


Asunto(s)
Enfermedades Cardiovasculares , LDL-Colesterol , Humanos , LDL-Colesterol/sangre , Enfermedades Cardiovasculares/prevención & control , Ensayos Clínicos Controlados Aleatorios como Asunto , Inhibidores de Hidroximetilglutaril-CoA Reductasas/efectos adversos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Hipolipemiantes/uso terapéutico , Hipolipemiantes/efectos adversos , Números Necesarios a Tratar , Ezetimiba/uso terapéutico , Ezetimiba/efectos adversos , Anticolesterolemiantes/uso terapéutico , Anticolesterolemiantes/efectos adversos , Inhibidores de PCSK9 , Medición de Riesgo , Adulto
14.
RSC Adv ; 14(23): 15987-15993, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38765478

RESUMEN

The type of self-assembled structure has a significant impact on the ionic conductivity of block copolymer or liquid crystalline (LC) ion conductors. In this study, we focus on the effect of self-assembled structures on the ionic conductivity of a non-block copolymer, LC ion conductor, which is a mixture of an azobenzene monomer (NbAzo), pentaerythritol tetre(3-mercapropionate) (PETMP), and a lithium salt, lithium bis(trifluoromethane)sulfonimide (LiTFSI). The self-assembled structures and ionic conductivities of ion conductors having different doping ratios of lithium salt to monomer were examined. With the increase in the doping ratio, the self-assembled structure transforms from lamellae (LAM) to double gyroid (GYR). The effect of self-assembled structure on ionic conductivity was analyzed; it was found that the conductivity of the GYR structure was about 3.6 times that of the LAM one, indicating that obtaining the GYR structure is more effective in improving ionic conductivity.

15.
Cell Mol Biol Lett ; 29(1): 77, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769475

RESUMEN

BACKGROUND: Tumor-associated macrophages (TAMs) significantly influence the progression, metastasis, and recurrence of esophageal squamous cell carcinoma (ESCC). The aberrant expression of long noncoding RNAs (lncRNAs) in ESCC has been established, yet the role of lncRNAs in TAM reprogramming during ESCC progression remains largely unexplored. METHODS: ESCC TAM-related lncRNAs were identified by intersecting differentially expressed lncRNAs with immune-related lncRNAs and performing immune cell infiltration analysis. The expression profile and clinical relevance of LINC00330 were examined using the TCGA database and clinical samples. The LINC00330 overexpression and interference sequences were constructed to evaluate the effect of LINC00330 on ESCC progression. Single-cell sequencing data, CIBERSORTx, and GEPIA were utilized to analyze immune cell infiltration within the ESCC tumor microenvironment and to assess the correlation between LINC00330 and TAM infiltration. ESCC-macrophage coculture experiments were conducted to investigate the influence of LINC00330 on TAM reprogramming and its subsequent effect on ESCC progression. The interaction between LINC00330 and C-C motif ligand 2 (CCL2) was confirmed through transcriptomic sequencing, subcellular localization analysis, RNA pulldown, silver staining, RNA immunoprecipitation, and other experiments. RESULTS: LINC00330 is significantly downregulated in ESCC tissues and strongly associated with poor patient outcomes. Overexpression of LINC00330 inhibits ESCC progression, including proliferation, invasion, epithelial-mesenchymal transition, and tumorigenicity in vivo. LINC00330 promotes TAM reprogramming, and LINC00330-mediated TAM reprogramming inhibits ESCC progression. LINC00330 binds to the CCL2 protein and inhibits the expression of CCL2 and downstream signaling pathways. CCL2 is critical for LINC00330-mediated TAM reprogramming and ESCC progression. CONCLUSIONS: LINC00330 inhibited ESCC progression by disrupting the CCL2/CCR2 axis and its downstream signaling pathways in an autocrine fashion; and by impeding CCL2-mediated TAM reprogramming in a paracrine manner. The new mechanism of TAM reprogramming mediated by the LINC00330/CCL2 axis may provide potential strategies for targeted and immunocombination therapies for patients with ESCC.


Asunto(s)
Quimiocina CCL2 , Progresión de la Enfermedad , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Regulación Neoplásica de la Expresión Génica , ARN Largo no Codificante , Microambiente Tumoral , Macrófagos Asociados a Tumores , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Humanos , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/patología , Carcinoma de Células Escamosas de Esófago/metabolismo , Línea Celular Tumoral , Microambiente Tumoral/genética , Macrófagos Asociados a Tumores/metabolismo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patología , Neoplasias Esofágicas/metabolismo , Animales , Ratones , Femenino , Proliferación Celular/genética
16.
J Phys Chem B ; 128(22): 5489-5499, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38777626

RESUMEN

There should be some intrinsic correlations between the surface free energy (γ) and solubility (δ) parameters, called characteristic parameters here, of substances with their fundamental physical properties such as the refractive index (nD), relative dielectric constant (εr), and density (ρ) because they are all related to intermolecular interactions. Understanding the correlations between characteristic parameters and fundamental physical quantities is of great fundamental and practical importance. In the current work, possible relationships between the characteristic parameters (γ and δ) and the physical quantities (nD, εr, and ρ) were explored by a trial-and-error fitting method based on the data of 92 liquids (including 14 nonpolar, 37 polar, and 41 hydrogen-bonded liquids). The γ parameters include total (γt), dispersive (γd), and polar (γp) ones, and the δ parameters include the Hildebrand parameter (δt) and the Hansen-dispersive (δd), polar (δp), and hydrogen-bonded (δh) ones. For each characteristic parameter, its relationship with the physical quantities was established. The applicability of the so-obtained relationships was confirmed using the data of another 66 liquids as an external data set. The empirical relationships can be used to estimate the characteristic parameters of liquids from their easily measurable physical quantities.

17.
World J Microbiol Biotechnol ; 40(5): 161, 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38613738

RESUMEN

Rhizopus nigricans (R. nigricans), one of the fungi that grows the fastest, is frequently discovered in postharvest fruits, it's the main pathogen of strawberry root rot. Flavonoids in Sedum aizoon L. (FSAL) is a kind of green and safe natural substance extracted from Sedum aizoon L. which has antifungal activity. In this study, the minimum inhibitory concentration (MIC) of FSAL on R. nigricans and cell apoptosis tests were studied to explore the inhibitory effect of FSAL on R. nigricans. The effects of FSAL on mitochondria of R. nigricans were investigated through the changes of mitochondrial permeability transition pore(mPTP), mitochondrial membrane potential(MMP), Ca2+ content, H2O2 content, cytochrome c (Cyt c) content, the related enzyme activity and related genes of mitochondria. The results showed that the MIC of FSAL on R. nigricans was 1.800 mg/mL, with the addition of FSAL (1.800 mg/mL), the mPTP openness of R. nigricans increased and the MMP reduced. Resulting in an increase in Ca2+ content, accumulation of H2O2 content and decrease of Cyt c content, the activity of related enzymes was inhibited and related genes were up-regulated (VDAC1, ANT) or down-regulated (SDHA, NOX2). This suggests that FSAL may achieve the inhibitory effect of fungi by damaging mitochondria, thereby realizing the postharvest freshness preservation of strawberries. This lays the foundation for the development of a new plant-derived antimicrobial agent.


Asunto(s)
Fragaria , Rhizopus , Sedum , Flavonoides/farmacología , Peróxido de Hidrógeno , Citocromos c , Mitocondrias
18.
BMC Cancer ; 24(1): 496, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637761

RESUMEN

Ferroptosis has important value in cancer treatment. It is significant to explore the new ferroptosis-related lncRNAs prediction model in Hepatocellular carcinoma (HCC) and the potential molecular mechanism of ferroptosis-related lncRNAs. We constructed a prognostic multi-lncRNA signature based on ferroptosis-related differentially expressed lncRNAs in HCC. qRT-PCR was applied to determine the expression of lncRNA in HCC cells. The biological roles of NRAV in vitro and in vivo were determined by performing a series of functional experiments. Furthermore, dual-luciferase reporter and RNA immunoprecipitation (RIP) assays were used to confirm the interaction of NRAV with miR-375-3P. We identified 6 differently expressed lncRNAs associated with the prognosis of HCC. Kaplan-Meier analyses revealed the high-risk lncRNAs signature associated with poor prognosis of HCC. Moreover, the AUC of the lncRNAs signature showed utility in predicting HCC prognosis. Further functional experiments show that the high expression of NRAV can strengthen the viciousness of HCC. Interestingly, we found that NRAV can enhance iron export and ferroptosis resistance. Further study showed that NRAV competitively binds to miR-375-3P and attenuates the inhibitory effect of miR-375-3P on SLC7A11, affecting the prognosis of patients with HCC. In conclusion, We developed a novel ferroptosis-related lncRNAs prognostic model with important predictive value for the prognosis of HCC. NRAV is important in ferroptosis induction through the miR-375-3P/SLC7A11 axis.


Asunto(s)
Carcinoma Hepatocelular , Ferroptosis , Neoplasias Hepáticas , MicroARNs , ARN Largo no Codificante , Humanos , Carcinoma Hepatocelular/genética , ARN Largo no Codificante/genética , Ferroptosis/genética , Neoplasias Hepáticas/genética , MicroARNs/genética , Pronóstico , Sistema de Transporte de Aminoácidos y+/genética
19.
J Am Chem Soc ; 146(17): 11657-11668, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38641862

RESUMEN

All protein-directed syntheses of metal nanoclusters (NCs) and nanoparticles (NPs) have attracted considerable attention because protein scaffolds provide a unique metal coordination environment and can adjust the shape and morphology of NCs and NPs. However, the detailed formation mechanisms of NCs or NPs directed by protein templates remain unclear. In this study, by taking advantage of the ferritin nanocage as a biotemplate to monitor the growth of Fe-O NCs as a function of time, we synthesized a series of iron NCs with different sizes and shapes and subsequently solved their corresponding three-dimensional atomic-scale structures by X-ray protein crystallography and cryo-electron microscopy. The time-dependent structure analyses revealed the growth process of these Fe-O NCs with the 4-fold channel of ferritin as nucleation sites. To our knowledge, the newly biosynthesized Fe35O23Glu12 represents the largest Fe-O NCs with a definite atomic structure. This study contributes to our understanding of the formation mechanism of iron NCs and provides an effective method for metal NC synthesis.


Asunto(s)
Ferritinas , Tamaño de la Partícula , Ferritinas/química , Nanopartículas del Metal/química , Hierro/química , Modelos Moleculares , Cristalografía por Rayos X , Compuestos Férricos/química
20.
Plant Physiol Biochem ; 208: 108480, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38437751

RESUMEN

It is well established that programmed cell death (PCD) occurred in broccoli during postharvest senescence, but no studies have been conducted on the regulation of broccoli cytochrome f by mannose treatment and its relationship with PCD. In this study, we treated broccoli buds with mannose to investigate the changes in color, total chlorophyll content, gene expression related to chlorophyll metabolism, chloroplast structure, and cytochrome f determination during postharvest storage. In addition, to investigate the effect of cytochrome f on PCD, we extracted cytochrome f from broccoli and treated Nicotiana tabacum L. cv Bright Yellow 2 (BY-2) cells with extracted cytochrome f from broccoli at various concentrations. The results showed that cytochrome f can induce PCD in tobacco BY-2 cells, as evidenced by altered cell morphology, nuclear chromatin disintegration, DNA degradation, decreased cell viability, and increased caspase-3-like protease production. Taken together, our study indicated that mannose could effectively delay senescence of postharvest broccoli by inhibiting the expression of gene encoding cytochrome f which could induce PCD.


Asunto(s)
Brassica , Brassica/genética , Citocromos f/metabolismo , Manosa/metabolismo , Manosa/farmacología , Nicotiana/genética , Apoptosis , Clorofila/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA