Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Asian J ; 18(20): e202300679, 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37695094

RESUMEN

Single-atom catalysts (SACs) have the unique coordination environment and electronic structure due to the quantum size effect, which plays an essential role in facilitating catalytic reactions. However, due to the limited understanding of the formation mechanism of single atoms, achieving the modulation of the local atomic structure of SACs is still difficult and challenging. Herein, we have prepared a series of Ni SACs loaded on nitrogen-doped carbon substrates with different parameters using a dissolution-and-carbonization method to systematically investigate the effect of temperature on the structure of the SACs. The results of characterization and electrochemical measurements are analyzed to reveal the uniform law between temperature and the metal loading, bond length, coordination number, valence state and CO2 reduction performance, showing the feasibility of controlling the structure of SACs through temperature to regulate the catalytic performance. This is important for the understanding of catalytic reaction mechanisms and the design of efficient catalysts.

2.
ChemSusChem ; 16(7): e202201385, 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-36683007

RESUMEN

The electrochemical nitrogen (N2 ) reduction reaction (N2 RR) under mild conditions is a promising and environmentally friendly alternative to the traditional Haber-Bosch process with high energy consumption and greenhouse emission for the synthesis of ammonia (NH3 ), but high-yielding production is rendered challenging by the strong nonpolar N≡N bond in N2 molecules, which hinders their dissociation or activation. In this study, disordered Au nanoclusters anchored on two-dimensional ultrathin Ti3 C2 Tx MXene nanosheets are explored as highly active and selective electrocatalysts for efficient N2 -to-NH3 conversion, exhibiting exceptional activity with an NH3 yield rate of 88.3±1.7 µg h-1 mgcat. -1 and a faradaic efficiency of 9.3±0.4 %. A combination of in situ near-ambient pressure X-ray photoelectron spectroscopy and operando X-ray absorption fine structure spectroscopy is employed to unveil the uniqueness of this catalyst for N2 RR. The disordered structure is found to serve as the active site for N2 chemisorption and activation during the N2 RR process.

3.
Proc Natl Acad Sci U S A ; 119(42): e2207326119, 2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36215478

RESUMEN

Electrochemical conversion of CO2 into formate is a promising strategy for mitigating the energy and environmental crisis, but simultaneously achieving high selectivity and activity of electrocatalysts remains challenging. Here, we report low-dimensional SnO2 quantum dots chemically coupled with ultrathin Ti3C2Tx MXene nanosheets (SnO2/MXene) that boost the CO2 conversion. The coupling structure is well visualized and verified by high-resolution electron tomography together with nanoscale scanning transmission X-ray microscopy and ptychography imaging. The catalyst achieves a large partial current density of -57.8 mA cm-2 and high Faradaic efficiency of 94% for formate formation. Additionally, the SnO2/MXene cathode shows excellent Zn-CO2 battery performance, with a maximum power density of 4.28 mW cm-2, an open-circuit voltage of 0.83 V, and superior rechargeability of 60 h. In situ X-ray absorption spectroscopy analysis and first-principles calculations reveal that this remarkable performance is attributed to the unique and stable structure of the SnO2/MXene, which can significantly reduce the reaction energy of CO2 hydrogenation to formate by increasing the surface coverage of adsorbed hydrogen.

4.
ACS Appl Mater Interfaces ; 14(37): 41969-41977, 2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36069363

RESUMEN

Electrochemical conversion of CO2 to high-value chemical fuels offers a promising strategy for managing the global carbon balance but faces huge challenges due to the lack of effective electrocatalysts. Here, we reported PdCu3 alloy nanoparticles with abundant exposed (110) facets supported on N-doped three-dimensional interconnected carbon frameworks (PdCu3/NC) as an efficient and durable electrocatalyst for electrochemical CO2 reduction to CO. The catalyst exhibits extremely high intrinsic CO2 reduction selectivity for CO production with a Faraday efficiency of nearly 100% at a mild potential of -0.5 V. Moreover, a rechargeable high-performance Zn-CO2 battery with PdCu3/NC as a cathode is developed to deliver a record-high energy efficiency of 99.2% at 0.5 mA cm-2 and rechargeable stability of up to 133 h. Theoretical calculations elucidate that the exposed (110) facet over PdCu3/NC is the active center for CO2 activation and rapid formation of the key *COOH intermediate.

5.
Sci Adv ; 8(22): eabm3779, 2022 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-35648856

RESUMEN

Anion exchange membrane fuel cells are limited by the slow kinetics of alkaline hydrogen oxidation reaction (HOR). Here, we establish HOR catalytic activities of single-atom and diatomic sites as a function of *H and *OH binding energies to screen the optimal active sites for the HOR. As a result, the Ru-Ni diatomic one is identified as the best active center. Guided by the theoretical finding, we subsequently synthesize a catalyst with Ru-Ni diatomic sites supported on N-doped porous carbon, which exhibits excellent catalytic activity, CO tolerance, and stability for alkaline HOR and is also superior to single-site counterparts. In situ scanning electrochemical microscopy study validates the HOR activity resulting from the Ru-Ni diatomic sites. Furthermore, in situ x-ray absorption spectroscopy and computational studies unveil a synergistic interaction between Ru and Ni to promote the molecular H2 dissociation and strengthen OH adsorption at the diatomic sites, and thus enhance the kinetics of HOR.

6.
Nat Mater ; 21(6): 681-688, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35606427

RESUMEN

Atomically dispersed single-atom catalysts have the potential to bridge heterogeneous and homogeneous catalysis. Dozens of single-atom catalysts have been developed, and they exhibit notable catalytic activity and selectivity that are not achievable on metal surfaces. Although promising, there is limited knowledge about the boundaries for the monometallic single-atom phase space, not to mention multimetallic phase spaces. Here, single-atom catalysts based on 37 monometallic elements are synthesized using a dissolution-and-carbonization method, characterized and analysed to build the largest reported library of single-atom catalysts. In conjunction with in situ studies, we uncover unified principles on the oxidation state, coordination number, bond length, coordination element and metal loading of single atoms to guide the design of single-atom catalysts with atomically dispersed atoms anchored on N-doped carbon. We utilize the library to open up complex multimetallic phase spaces for single-atom catalysts and demonstrate that there is no fundamental limit on using single-atom anchor sites as structural units to assemble concentration-complex single-atom catalyst materials with up to 12 different elements. Our work offers a single-atom library spanning from monometallic to concentration-complex multimetallic materials for the rational design of single-atom catalysts.

7.
Small ; 18(2): e2105076, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34799991

RESUMEN

Effects of electronic and atomic structures of V-doped 2D layered SnS2 are studied using X-ray spectroscopy for the development of photocatalytic/photovoltaic applications. Extended X-ray absorption fine structure measurements at V K-edge reveal the presence of VO and VS bonds which form the intercalation of tetrahedral OVS sites in the van der Waals (vdW) gap of SnS2 layers. X-ray absorption near-edge structure (XANES) reveals not only valence state of V dopant in SnS2 is ≈4+ but also the charge transfer (CT) from V to ligands, supported by V Lα,ß resonant inelastic X-ray scattering. These results suggest V doping produces extra interlayer covalent interactions and additional conducting channels, which increase the electronic conductivity and CT. This gives rapid transport of photo-excited electrons and effective carrier separation in layered SnS2 . Additionally, valence-band photoemission spectra and S K-edge XANES indicate that the density of states near/at valence-band maximum is shifted to lower binding energy in V-doped SnS2 compare to pristine SnS2 and exhibits band gap shrinkage. These findings support first-principles density functional theory calculations of the interstitially tetrahedral OVS site intercalated in the vdW gap, highlighting the CT from V to ligands in V-doped SnS2 .

8.
ACS Appl Mater Interfaces ; 13(35): 41524-41536, 2021 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-34436855

RESUMEN

Synchrotron-based X-ray spectroscopic and microscopic techniques are used to identify the origin of enhancement of the photoelectrochemical (PEC) properties of BiVO4 (BVO) that is coated on ZnO nanodendrites (hereafter referred to as BVO/ZnO). The atomic and electronic structures of core-shell BVO/ZnO nanodendrites have been well-characterized, and the heterojunction has been determined to favor the migration of charge carriers under the PEC condition. The variation of charge density between ZnO and BVO in core-shell BVO/ZnO nanodendrites with many unpaired O 2p-derived states at the interface forms interfacial oxygen defects and yields a band gap of approximately 2.6 eV in BVO/ZnO nanocomposites. Atomic structural distortions at the interface of BVO/ZnO nanodendrites, which support the fact that there are many interfacial oxygen defects, affect the O 2p-V 3d hybridization and reduce the crystal field energy 10Dq ∼2.1 eV. Such an interfacial atomic/electronic structure and band gap modulation increase the efficiency of absorption of solar light and electron-hole separation. This study provides evidence that the interfacial oxygen defects act as a trapping center and are critical for the charge transfer, retarding electron-hole recombination, and high absorption of visible light, which can result in favorable PEC properties of a nanostructured core-shell BVO/ZnO heterojunction. Insights into the local atomic and electronic structures of the BVO/ZnO heterojunction support the fabrication of semiconductor heterojunctions with optimal compositions and an optimal interface, which are sought to maximize solar light utilization and the transportation of charge carriers for PEC water splitting and related applications.

9.
Sci Rep ; 10(1): 12725, 2020 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-32728171

RESUMEN

A series of Eu3+-activated strontium silicate phosphors, Sr2SiO4:xEu3+ (SSO:xEu3+, x = 1.0, 2.0 and 5.0%), were synthesized by a sol-gel method, and their crystalline structures, photoluminescence (PL) behaviors, electronic/atomic structures and bandgap properties were studied. The correlation among these characteristics was further established. X-ray powder diffraction analysis revealed the formation of mixed orthorhombic α'-SSO and monoclinic ß-SSO phases of the SSO:xEu3+ phosphors. When SSO:xEu3+ phosphors are excited under ultraviolet (UV) light (λ = 250 nm, ~ 4.96 eV), they emit yellow (~ 590 nm), orange (~ 613 nm) and red (~ 652 and 703 nm) PL bands. These PL emissions typically correspond to 4f-4f electronic transitions that involve the multiple excited 5D0 → 7FJ levels (J = 1, 2, 3 and 4) of Eu3+ activators in the host matrix. This mechanism of PL in the SSO:xEu3+ phosphors is strongly related to the local electronic/atomic structures of the Eu3+-O2- associations and the bandgap of the host lattice, as verified by Sr K-edge and Eu L3-edge X-ray absorption near-edge structure (XANES)/extended X-ray absorption fine structure, O K-edge XANES and Kα X-ray emission spectroscopy. In the synthesis of SSO:xEu3+ phosphors, interstitial Eu2O3-like structures are observed in the host matrix that act as donors, providing electrons that are nonradiatively transferred from the Eu 5d and/or O 2p-Eu 4f/5d states (mostly the O 2p-Eu 5d states) to the 5D0 levels, facilitating the recombination of electrons that have transitioned from the 5D0 level to the 7FJ level in the bandgap. This mechanism is primarily responsible for the enhancement of PL emissions in the SSO:xEu3+ phosphors. This PL-related behavior indicates that SSO:xEu3+ phosphors are good light-conversion phosphor candidates for use in near-UV chips and can be very effective in UV-based light-emitting diodes.

10.
Nano Lett ; 18(7): 4506-4515, 2018 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-29856638

RESUMEN

As the lightest and cheapest transition metal dichalcogenide, TiS2 possesses great potential as an electrode material for lithium batteries due to the advantages of high energy density storage capability, fast ion diffusion rate, and low volume expansion. Despite the extensive investigation of its electrochemical properties, the fundamental discharge-charge reaction mechanism of the TiS2 electrode is still elusive. Here, by a combination of ex situ and operando X-ray absorption spectroscopy with density functional theory calculations, we have clearly elucidated the evolution of the structural and chemical properties of TiS2 during the discharge-charge processes. The lithium intercalation reaction is highly reversible and both Ti and sulfur are involved in the redox reaction during the discharge and charge processes. In contrast, the conversion reaction of TiS2 is partially reversible in the first cycle. However, Ti-O related compounds are developed during electrochemical cycling over extended cycles, which results in the decrease of the conversion reaction reversibility and the rapid capacity fading. In addition, the solid electrolyte interphase formed on the electrode surface is found to be highly dynamic in the initial cycles and then gradually becomes more stable upon further cycling. Such understanding is important for the future design and optimization of TiS2 based electrodes for lithium batteries.

11.
Nano Lett ; 17(9): 5540-5545, 2017 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-28762272

RESUMEN

As a model system for hydrogen storage, magnesium hydride exhibits high hydrogen storage density, yet its practical usage is hindered by necessarily high temperatures and slow kinetics for hydrogenation-dehydrogenation cycling. Decreasing particle size has been proposed to simultaneously improve the kinetics and decrease the sorption enthalpies. However, the associated increase in surface reactivity due to increased active surface area makes the material more susceptible to surface oxidation or other side reactions, which would hinder the overall hydrogenation-dehydrogenation process and diminish the capacity. Previous work has shown that the chemical stability of Mg nanoparticles can be greatly enhanced by using reduced graphene oxide as a protecting agent. Although no bulklike crystalline MgO layer has been clearly identified in this graphene-encapsulated/Mg nanocomposite, we propose that an atomically thin layer of honeycomb suboxide exists, based on first-principles interpretation of Mg K-edge X-ray absorption spectra. Density functional theory calculations reveal that in contrast to conventional expectations for thick oxides this interfacial oxidation layer permits H2 dissociation to the same degree as pristine Mg metal with the added benefit of enhancing the binding between reduced graphene oxide and the Mg nanoparticle, contributing to improved mechanical and chemical stability of the functioning nanocomposite.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...