Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Anal Chem ; 96(21): 8365-8372, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38717986

RESUMEN

Simultaneous sensitive and precise determination of multibiomarkers is of great significance for improving detection efficiency, reducing diagnosis and treatment expenses, and elevating survival rates. However, the development of simple and portable biosensors for simultaneous determination of multiplexed targets in biological fluids still faces challenges. Herein, a unique and versatile immobilization-free dual-target electrochemical biosensing platform, which combines distinguishable magnetic signal reporters with buoyancy-magnetism separation, was designed and constructed for simultaneous detection of carcinoembryonic (CEA) and α-fetoprotein (AFP) in intricate biological fluids. To construct such distinguishable magnetic signal reporters with signal transduction, amplification, and output, secondary antibodies of CEA and AFP were respectively functionalized on methylene blue (MB) and 6-(ferrocenyl)hexanethiol (FeC) modified Fe3O4@Au magnetic nanocomposites. Meanwhile, a multifunctional flotation probe with dual target recognition, capture, and isolation capability was prepared by conjugating primary antibodies (Ab1-CEA, Ab1-AFP) to hollow buoyant microspheres. The target antigens of CEA and AFP can trigger a flotation-mediated sandwich-type immunoreaction and capture a certain amount of the distinguishable magnetic signal reporter, which enables the conversion of the target CEA and AFP quantities to the signal of the potential-resolved MB and FeC. Thus, the MB and FeC currents of magnetically adsorbed distinguishable magnetic reporters can be used to determine the CEA and AFP targets simultaneously and precisely. Accordingly, the proposed strategy exhibited a delightful linear response for CEA and AFP in the range of 100 fg·mL-1-100 ng·mL-1 with detection limits of 33.34 and 17.02 fg·mL-1 (S/N = 3), respectively. Meanwhile, no significant nonspecific adsorption and cross-talk were observed. The biosensing platform has shown satisfactory performance in the determination of real clinical samples. More importantly, the proposed approach can be conveniently extended to universal detection just by simply substituting biorecognition events. Thus, this work opens up a new promising perspective for dual and even multiple targets and offers promising potential applications in clinical diagnosis.


Asunto(s)
Técnicas Biosensibles , Antígeno Carcinoembrionario , Técnicas Electroquímicas , alfa-Fetoproteínas , alfa-Fetoproteínas/análisis , alfa-Fetoproteínas/inmunología , Antígeno Carcinoembrionario/análisis , Antígeno Carcinoembrionario/inmunología , Técnicas Biosensibles/métodos , Humanos , Inmunoensayo/métodos , Oro/química , Límite de Detección
2.
Talanta ; 274: 126023, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38583328

RESUMEN

Dual-potential ratiometric electrochemiluminescence (ECL) is in favor of resistance to environmental interference. However, two kinds of emitters or coreactants, and a wide scan potential range (>2 V) are mandatory. This work developed a new dual-potential ratiometric ECL sensor for detection of carcinoembryonic antigen (CEA) using single emitter (luminol) and single coreactant (H2O2) with a mild potential range from -0.1 to 0.6 V. Luminol could produce a strong cathodic ECL (Ec) induced by hydroxyl radicals (HO‧) from the reduction of H2O2, and a relatively weak anodic ECL (Ea). After the ferrocene modified CEA aptamer (Apt-Fc) was attached, Fc could promote Ea by catalyzing the oxidation of H2O2, and reduce Ec by consuming HO‧. With the cycling amplification of the exonuclease I, CEA could substantially reduce the amount of Apt-Fc, resulting in the decrease of Ea and the rise of Ec. So, the ratio of Ec to Ea (Ec/Ea) was used as the detection signal, realizing the sensitive determination of CEA from 0.1 pg mL-1 to 10 ng mL-1 with a LOD of 41.85 fg mL-1 (S/N = 3). The developed sensor demonstrated excellent specificity, stability and reproducibility, with satisfactory results in practical detection.


Asunto(s)
Aptámeros de Nucleótidos , Antígeno Carcinoembrionario , Técnicas Electroquímicas , Peróxido de Hidrógeno , Mediciones Luminiscentes , Luminol , Antígeno Carcinoembrionario/análisis , Antígeno Carcinoembrionario/sangre , Técnicas Electroquímicas/métodos , Humanos , Mediciones Luminiscentes/métodos , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/análisis , Luminol/química , Aptámeros de Nucleótidos/química , Límite de Detección , Técnicas Biosensibles/métodos , Metalocenos/química , Compuestos Ferrosos/química
3.
Lab Chip ; 24(2): 367-374, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-38126214

RESUMEN

Carcinoembryonic antigen (CEA) is a biomarker of high expression in cancer cells. Highly sensitive and selective detection of CEA holds significant clinical value in the diagnosis, monitoring and efficacy evaluation of malignant tumors. In this work, a smartphone-based electrochemical point-of-care testing (POCT) platform for the detection of CEA was developed based on a Zr6MOF signal amplification strategy. Ferrocene labeled DNA strands (Fc-DNA) were immobilized on Zr6MOFs to form a Fc-DNA/Zr6MOF signal probe. Double-stranded DNA (dsDNA) formed by complementary DNA (cDNA) and CEA aptamer was assembled on a screen-printed electrode via an Au-S bond. When CEA was added, the aptamer specifically bound with CEA, resulting in the exposure of cDNA. Then, Fc-DNA/Zr6MOF signal probes were introduced on the electrode surface through hybridization between Fc-DNA and cDNA. The detection of CEA was realized by measuring the electrochemical response of Fc. The POCT device was made by connecting a modified electrode with a smartphone through a Sensit Smart USB flash disk. Due to the signal amplification of Zr6MOFs, this POCT platform exhibited high sensitivity, wide linear range, and low detection limit for CEA detection. The developed POCT platform has been used for the detection of CEA in actual human serum samples with satisfactory results.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Humanos , Antígeno Carcinoembrionario , ADN Complementario , Teléfono Inteligente , ADN/química , Aptámeros de Nucleótidos/química , Técnicas Electroquímicas , Límite de Detección , Oro/química
4.
Chem Commun (Camb) ; 59(86): 12911-12914, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37823254

RESUMEN

Compared with single signal detection, a ratiometric biosensor could offer more accurate and reliable results. Here, a ratiometric electrochemical biosensor for the sensitive and accurate detection of dopamine was developed based on the strong adsorption ability of MXene-Au toward methylene blue, an inner reference element. This ratiometric sensing strategy opened up a new avenue for the development of a ratiometric platform.


Asunto(s)
Técnicas Biosensibles , Nanocompuestos , Dopamina , Técnicas Electroquímicas , Técnicas Biosensibles/métodos , Límite de Detección , Oro
5.
Analyst ; 148(17): 4037-4043, 2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37522239

RESUMEN

As a prognostic biomarker for breast cancer, human epidermal growth factor receptor 2 (HER-2) is of crucial diagnostic value. Here, a label-free electrochemical aptasensor was established for the ultrasensitive detection of HER-2 using a modified electrode of Bi-Sb alloy materials (Bi-Sb AMs). The performance of the aptasensor was enhanced greatly due to the introduction of Bi-Sb alloy materials (Bi-Sb AMs) with high conductivity. Furthermore, by integrating the aptasensor with the Sensit Smart U-disk electrochemical analyzer, the point-of-care testing (POCT) for HER-2 was realized. Under the optimal experimental parameters, the POCT analyzer showed a wide linear response from 0.01 pg mL-1 to 100 ng mL-1, with a low detection limit (LOD) of 5.96 fg mL-1 for the detection of HER-2. The presented POCT analyzer exhibited good specificity, stability, and reproducibility. Benefiting from the simple operation and rapid testing, the developed analyzer will have potential application in the prognostic diagnosis and treatment of breast cancer.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Humanos , Técnicas Electroquímicas , Aleaciones , Reproducibilidad de los Resultados , Límite de Detección , Oro
6.
Anal Chem ; 95(18): 7336-7343, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37129510

RESUMEN

Rapid and accurate detection of biomolecules is of vital importance for the diagnosis of disease and for performing timely treatments. The point-of-care analysis of cancer biomarkers in the blood with low cost and easy processing is still challenging. Herein, an advanced and robust strategy, which integrates the buoyant recognition probe with the magnetic reporter probe in one solution, was first proposed for immobilization-free electrochemical immunosensing. The tumor marker of alpha fetoprotein (AFP) can be captured immune-buoyantly, and then a multifunctional magnetic reporter probe in pseudo-homogeneous solution was further captured to fulfill a sandwich-type immunoreaction. The residual magnetic reporter probe can be firmly and efficiently attracted on a magnetic glassy carbon electrode to fulfill the conversion of the target AFP amount into the residual magnetic electrochemical signal indicator. As a result, the electrochemical signal of methylene blue can accurately reflect the original level of target antigen AFP concentration. By integrating buoyancy-driven quasi-homogenous biorecognition with magnetism-mediated amplification and signal output, the proposed immobilization-free electrochemical immunosensing strategy displayed a wide range of linear response (100 fg mL-1 to 10 ng mL-1), low detection limit (14.52 fg mL-1), and good reproducibility, selectivity, and stability. The designed strategy manifests remarkable advantages including assay simplicity, rapidness, and high sensitivity owing to the in-solution instead of on-electrode biorecognition that could accelerate and improve the biorecognition efficiency. To the best of our knowledge, this is the first cooperation of buoyancy-driven biorecognition with magnetism-mediated signal output in bioanalysis, which would be attractive for rapid clinic biomedical application. Thus, this work provides a fresh perspective for convenient and favorable immobilization-free electrochemical biosensing of universal biomolecules.


Asunto(s)
Técnicas Biosensibles , alfa-Fetoproteínas , alfa-Fetoproteínas/análisis , Técnicas Electroquímicas , Reproducibilidad de los Resultados , Biomarcadores de Tumor/análisis , Límite de Detección , Inmunoensayo , Oro/química
7.
Biosens Bioelectron ; 226: 115116, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36753989

RESUMEN

DNA nanomachines have shown potential application in the construction of various biosensors. Here, an electrochemiluminescence biosensor for the sensitive detection of miRNA-21 were reported based on three-dimensional (3D) DNA nanomachine and duplex-specific nuclease (DSN)-mediated target recycle amplification strategy. First, the bipedal DNA walkers were obtained by DSN-mediated digestion reaction initiated by target miRNA-21.3D DNA tracks were prepared by modifying Fe3O4 magnetic beads (MBs) with ferrocene-labeled DNA (Fc-DNA). The produced DNA walkers autonomously moved along 3D DNA tracks powered by nicking endonuclease. During the movement, ferrocene-labeled DNA was cleaved, resulting in large amounts of Fc-labeled DNA fragments away from the MBs surface. Finally, the liberated Fc-labeled DNA fragments were dropped on the C-g-C3N4 modified electrode surface, leading to the quenching of C-g-C3N4 electrochemiluminescence (ECL). Benefiting from the dual amplification strategy of 3D DNA nanomachine and DSN-mediated target recycling, the developed ECL biosensor exhibited an excellent performance for miRNA-21 detection with a wide linear range of 10 fM to 10 nM and a low detection limit of 1.0 fM. This work offers a new thought for the application of DNA walkers in the construction of various biosensors.


Asunto(s)
Técnicas Biosensibles , MicroARNs , Metalocenos , Mediciones Luminiscentes/métodos , Endonucleasas , Límite de Detección , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , ADN/genética
8.
Anal Chem ; 94(37): 12845-12851, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36067524

RESUMEN

Ratiometric electrochemiluminescence (ECL) sensors can efficiently remove environmental interference to attain precise detection. Nonetheless, two eligible luminophores or coreactants were usually needed, increasing the complexity and restricting their practical application. In this study, a single luminophore of luminol with a single coreactant of H2O2 was employed to construct a dual-potential ratiometric ECL sensor for the detection of carcinoembryonic antigen (CEA). The produced palladium nanoclusters (Pd NCs) employing a DNA duplex as a template could not only stimulate luminol to produce cathodic ECL (Icathodic) but also quench its anodic ECL (Ianodic). During the detection process, CEA could damage the double-stranded structure and reduce the Pd NCs' amount, triggering a significant decrease in the ratio of Icathodic to Ianodic (Icathodic/Ianodic) and thereby achieving sensitive CEA's detection. Furthermore, the Icathodic/Ianodic was independent of the H2O2 concentration, which avoided a prejudicial effect from H2O2 decomposition and considerably enhanced the detection's reliability. The developed ratiometric ECL sensor demonstrated a sensitive detection toward CEA with a wide linear range from 100 ag/mL to 10 ng/mL and a detection limit of 87.1 ag/mL (S/N = 3). In conclusion, this study offers a new idea for constructing ratiometric ECL sensors based on a single luminophore and technical support for cancer's early diagnosis.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Antígeno Carcinoembrionario , ADN/química , Técnicas Electroquímicas , Peróxido de Hidrógeno , Límite de Detección , Mediciones Luminiscentes , Luminol/química , Nanopartículas del Metal/química , Paladio/química , Reproducibilidad de los Resultados
9.
Mikrochim Acta ; 189(1): 17, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34873664

RESUMEN

As well known, the electrochemiluminescence (ECL) of tris(2,2'-bipyridine)ruthenium(II) (Ru(bpy)32+) heavily relies on highly positive or negative triggered voltage, prejudicing the detection toward the bio-molecules. In this work, Ru(bpy)32+ could generate enhanced and stable ECL at a low potential of 0.05 V (vs. Ag/AgCl) on graphene-PtPd hybrid, attributing to its excellent electrocatalysis from the synergistic effect between Pt and Pd. The obtained low-potential-driven ECL could be quenched by MoS2 nanoflowers. Based on the quenching effect, a sandwich "signal-off" ECL immunosensor was fabricated to sensitively detect carcinoembryonic antigen (CEA). A linear calibration curve from 1 fg mL-1 to 1 ng mL-1 was obtained along with a low detection limit of 0.54 fg mL-1 (S/N = 3) under optimal conditions. The sensor showed satisfactory specificity, stability, and reproducibility and was successfully applied to determine CEA in actual samples. The recoveries ranged from 98.80 to 100.23%, and the relative standard deviation (RSD) was lower than 5%. Above all, this work explored new materials in low-potential-driven ECL system and provided a reliable sensing strategy for clinical applications.


Asunto(s)
Antígeno Carcinoembrionario/sangre , Técnicas Electroquímicas/métodos , Inmunoensayo/métodos , Sustancias Luminiscentes/química , Nanocompuestos/química , Compuestos Organometálicos/química , Anticuerpos Inmovilizados/inmunología , Antígeno Carcinoembrionario/inmunología , Disulfuros/química , Grafito/química , Humanos , Límite de Detección , Molibdeno/química , Paladio/química , Platino (Metal)/química , Reproducibilidad de los Resultados
10.
Analyst ; 146(8): 2705-2711, 2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33751013

RESUMEN

A novel ratiometric electrochemical biosensing strategy based on T7 exonuclease (T7 Exo)-assisted homogenous target recycling coupling hairpin assembly triggered dual-signal output was proposed for the accurate and sensitive detection of microRNA-141 (miRNA-141). Concretely, in the presence of target miRNA, abundant signal transduction probes were released via the T7 Exo-assisted homogenous target recycling amplification, which could be captured by the specially designed ferrocene-labeled hairpin probe (Fc-H1) on -electrode interface and triggered the nonenzymatic catalytic hairpin assembly (Fc-H1 + MB-H2) to realize the cascade signal amplification and dual-signal output. Through such a conformational change process, the electrochemical signal of Fc (IFc) and MB (IMB) is proportionally and substantially decreased and increased. Therefore, the signal ratio of IMB/IFc can be employed to accurately reflect the true level of original miRNA. Benefiting from the efficient integration of the T7 Exo-assisted target recycle, nonenzymatic hairpin assembly and dual-signal output mode, the proposed sensor could realize the amplified detection of miRNA-141 effectively with a wide detection range from 1 fM to 100 pM, and a detection limit of 200 aM. Furthermore, it exhibits outstanding sequence specificity to discriminate mismatched RNA, acceptable reproducibility and feasibility for real sample. This strategy effectively integrated the advantages of multiple amplification and ratiometric output modes, which could provide an accurate and efficient method in biosensing and clinical diagnosis.


Asunto(s)
Técnicas Biosensibles , MicroARNs , Técnicas Electroquímicas , Exodesoxirribonucleasas , Límite de Detección , MicroARNs/genética , Reproducibilidad de los Resultados
11.
Chem Commun (Camb) ; 56(75): 11074-11077, 2020 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-32812587

RESUMEN

A DNA immobilization-free ECL aptasensor was developed for the detection of 8-hydroxy-2'-deoxygunosine based on the diffusion mediated ECL quenching effect. This ECL aptasensor exhibited a high sensitivity and low detection limit by combining homogeneous DNA reaction with dual signal amplifications: target-induced multi-DNA release and Exo I-assisted target recycling.

12.
Analyst ; 145(10): 3605-3611, 2020 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-32266898

RESUMEN

A sensitive and enzyme-free electrochemical aptasensor was constructed for the sensing of 8-hydroxy-2'-deoxyguanosine (8-OH-dG). In the process of constructing the aptasensor, triple signal amplification strategies were introduced to enhance the sensitivity. First, every aptamer/pDNA complex immobilized on magnetic beads could release three kinds of pDNAs when 8-OH-dG was introduced, which caused three-fold magnification of the target. Second, the released three kinds of pDNAs initiated catalyzed hairpin assembly between two hairpin DNAs (HP1 and HP2) on a gold electrode. Meanwhile, the three kinds of pDNAs were released again by a strand displacement reaction to obtain the next catalyzed hairpin assembly. Third, the emerging toehold of HP2 further induced a hybridization chain reaction (HCR) between two hairpin DNAs (HP3 and HP4), forming a long double-stranded DNA concatemer on the surface of the electrode. Finally, [Ru(NH3)6]3+, an electroactive cation, was adsorbed onto the long dsDNA concatemer by electrostatic interactions and consequently, an electrochemical signal was generated. Under this triple signal amplification, a low detection limit down to 24.34 fM has been obtained for 8-OH-dG determination, which is superior to those of most previously reported methods.


Asunto(s)
8-Hidroxi-2'-Desoxicoguanosina/análisis , Biocatálisis , Técnicas Biosensibles/métodos , ADN/química , ADN/genética , Secuencias Invertidas Repetidas , 8-Hidroxi-2'-Desoxicoguanosina/química , 8-Hidroxi-2'-Desoxicoguanosina/orina , Aptámeros de Nucleótidos/metabolismo , Electroquímica , Humanos , Hibridación de Ácido Nucleico
13.
Biosens Bioelectron ; 144: 111669, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31494507

RESUMEN

8-Hydroxy-2'-deoxyguanosine (8-OH-dG) is a principal stable marker of DNA oxidative damage. Sensitive and specific detection of 8-OH-dG is of great importance for early disease diagnosis. In this paper, we developed an electrochemiluminescence aptasensor for 8-OH-dG detection based on target induced multi-DNA release and nicking enzyme signaling amplification strategy. First, three kinds of short DNAs were aligned on the aptamers immobilized on the magnetic beads. In the presence of 8-OH-dG, the aptamer recognized and specifically bound with 8-OH-dG, leading to the release of three kinds of short DNAs and three-fold signal amplification. Then the released short DNAs hybridized with ferrocence (Fc) labeled hairpin DNA (Fc-HP) immobilized on the gold electrode to form a double strand DNA. Subsequently, nicking endonuclease (Nt.AlwI) recognized the asymmetric sequence in the dsDNA and cleaved the substrate strand (Fc-HP) into two parts, one fragments containing Fc would leave the surface of electrode. Based on the quenching effect of Fc on the electrochemiluminescence (ECL) of Ru(bpy)32+/TPA, a signal-on ECL aptasensor was developed. At the same time, three kinds of short DNAs were released again and reused to initiate the repeated cycles of hybridization-cleavage. Under double signal amplification, this aptasensor achieved a low detection of 25 fM and a wide linear range from 100 fM to 10 nM for 8-OH-dG. Besides, the amount of 8-OH-dG in urine samples derived from different people were determined with satisfactory results.


Asunto(s)
8-Hidroxi-2'-Desoxicoguanosina/aislamiento & purificación , Técnicas Biosensibles , ADN/química , Técnicas de Amplificación de Ácido Nucleico/métodos , 8-Hidroxi-2'-Desoxicoguanosina/química , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/genética , ADN/genética , Roturas del ADN de Cadena Simple , Oro/química , Humanos , Mediciones Luminiscentes/métodos , Nanopartículas del Metal/química , Hibridación de Ácido Nucleico
14.
Biosens Bioelectron ; 141: 111436, 2019 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-31226604

RESUMEN

The low-potential electrochemiluminescence (ECL) sensors based on cathodic light emission of luminol have caused more and more concerns due to their good stability and reproducibility. In this work, highly porous platinum (Pt) nanostructures on ionic liquid functionalized graphene film (GR-IL/pPt) were prepared as platform to construct a label-free ECL sensor for the detection of carcinoembryonic antigen (CEA). Due to their good biocompatibility, excellent electrocatalytic activity and highly porous structure, the as-prepared GR-IL/pPt composites benefited amplified cathodic ECL signal of luminol and high loading density of the CEA antibody. After CEA was incubated with the CEA antibody, the cathodic ECL signal of luminol decreased thanks to the less conductive immunocomplex. The proposed ECL immunosensor realized high sensitivity for CEA detection with a wide linear range from 0.001 fg mL-1 to 1 ng mL-1 and an extremely low detection limit of 0.0003 fg mL-1 (S/N = 3). Moreover, the sensor showed good specificity, stability and reproducibility, indicating that the provided strategy had a promising potential in clinical detection.


Asunto(s)
Técnicas Biosensibles/métodos , Antígeno Carcinoembrionario/sangre , Sustancias Luminiscentes/química , Mediciones Luminiscentes/métodos , Luminol/química , Técnicas Electroquímicas/métodos , Grafito/química , Humanos , Líquidos Iónicos/química , Límite de Detección , Platino (Metal)/química , Porosidad
15.
Talanta ; 200: 503-510, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31036215

RESUMEN

In this work, an ultrasensitive aptasensor for the detection of Mucin 1 (MUC1) was presented based on the target-induced catalytic hairpin assembly combined with excellent mimic peroxidase performance of PtPd bimetallic nanoparticles (PtPdNPs). Traditionally, the cyclic reuse of target protein was achieved by protein conversion with enzyme cleavage or polymerization, which is costly and complex. However, in this work, it can be performed by simple strand displacement. In addition, PtPdNPs, a mimic peroxidase, was used a probe to catalyze the oxidation of tetramethylbenzidine (TMB) by H2O2, leading to the electrochemical signal amplification. With this ingenious design, the prepared aptasensor for MUC1 detection showed a favorable linear response from 100 fg mL-1 to 1 ng mL-1 and a relatively low detection limit of 16 fg mL-1. The proposed biosensor possessed acceptable stability, selectivity and reproducibility for MUC1 assay. Additionally, the fabricated aptasensor has been successfully applied to detect MUC1 in serum samples with satisfactory results. This new strategy supplied one efficient approach to improve signal amplification, which also open an avenue for sensitivity enhancement in targets detection.


Asunto(s)
Aptámeros de Nucleótidos/química , Técnicas Electroquímicas , Nanopartículas del Metal/química , Mucina-1/análisis , Bencidinas/química , Técnicas Biosensibles , Catálisis , Humanos , Peróxido de Hidrógeno/química , Oxidación-Reducción , Paladio/química , Peroxidasa/química , Peroxidasa/metabolismo , Platino (Metal)/química
16.
Biosens Bioelectron ; 122: 224-230, 2018 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-30265973

RESUMEN

A versatile label-free electrochemical biosensor based on dual enzyme assisted multiple amplification strategy was developed for ultrasensitive detection of circulating tumor DNA (ctDNA). The biosensor consists of a triple-helix molecular switch (THMS) as molecular recognition and signal transduction probe, ribonuclease HII (RNase HII) and terminal deoxynucleotidyl transferase (TdT) as dual enzyme assisted multiple amplification accelerator. The presence of target ctDNA could open THMS and trigger RNase HII-assisted homogenous target recycling amplification to produce substantial signal transduction probe (STP). The released STP hybridized with the capture probe immobilized on a gold electrode, then TdT and assistant probe were further employed to fulfill TdT-mediated cascade extension and generate stable DNA dendritic nanostructures. The electroactive methyl blue (MB) was finally used as the signal reporter to realize the multiple electrochemical amplification ctDNA detection as the amount of MB is positively correlated with the target ctDNA. Combined with the efficient recognition capacity of the designed THMS and the excellent multiple amplification ability of RNase HII and TdT, the constructed sensing platform could detect KRAS G12DM with a wide detection range from 0.01 fM to 1 pM, and the limit of detection as low as 2.4 aM. Besides, the platform is capable of detecting ctDNA in biological fluid such as plasma. More importantly, by substituting the loop of THMS with different sequences, this strategy could be conveniently expanded into the detection of other ctDNA, showing promising potential applications in clinical cancer screening and prognosis.


Asunto(s)
Técnicas Biosensibles/métodos , ADN Tumoral Circulante/sangre , Neoplasias/sangre , ADN Nucleotidilexotransferasa/química , Técnicas Electroquímicas/métodos , Humanos , Límite de Detección , Técnicas de Amplificación de Ácido Nucleico/métodos , Hibridación de Ácido Nucleico/métodos , Ribonucleasa H/química
17.
Biosens Bioelectron ; 117: 690-695, 2018 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-30014942

RESUMEN

The present work reported a simple, lable-free and sensitive electrochemical method for the detection of protein kinase A (PKA) activity. This method was based on the specific recognition of aptamer and the aptamer-induced hybridization chain reaction (HCR) amplification strategy. The aptasensor was constructed by immobilizing capture probe on a gold electrode via an Au-S bond. When adenosine triphosphate (ATP) aptamer was introduced, its one terminus hybridized with capture probe and the other hybridized with the complementary region of an auxiliary probe, which other region triggered HCR between two hairpin DNA (H1 and H2) to form a long DNA concatamer. At last a large number of electroactive methyle blue (MB) molecules were assembled on the dsDNA concatamer, which generated a significantly amplified electrochemical signal. In the presence of ATP, the HCR would not be performed because the aptamer specifically bond to ATP and the electrochemical response would decrease. However, when ATP and PKA coexisted, the electrochemical response would recovery because that ATP had been translated into ADP by PKA. So the activity of PKA could be effectively monitored according to the change of electrochemical signal. Based on the HCR amplification strategy, the aptasensor showed a wide linear range (4 - 4 ×105 U L-1) and a low detection limit (1.5 U L-1) for the detection of PKA. Furthermore, the method was applied to study the inhibitory effect of H-89 on PKA activity. The developed aptasensor was also used to the analysis of drug-induced PKA activity in cell lysates, indicating the potential application of the developed method in the fields of clinical diagnostics and discovery of new targeted drugs.


Asunto(s)
Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Técnicas Electroquímicas , Proteínas Quinasas/metabolismo , Aptámeros de Nucleótidos , Electrodos , Activación Enzimática/efectos de los fármacos , Pruebas de Enzimas , Oro/química , Isoquinolinas/farmacología , Límite de Detección , Hibridación de Ácido Nucleico , Sulfonamidas/farmacología
18.
Talanta ; 179: 414-419, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29310253

RESUMEN

In the present work a highly sensitive and selective aptasensor was developed for the determination of 8-hydroxy-2'-deoxyguanosine (8-OH-dG) based on the hybridization chain reaction (HCR) signal amplification. It was observed that the aptamer of 8-OH-dG could hybridize with the capture DNA immobilized on the gold electrode with a sticky tail left, which initiated the HCR and led to the formation of extended dsDNA structure on the electrode surface. Then the electroactive species ([Ru(NH3)6]3+, RuHex) intercalated into the dsDNA grooves to generate the amplified signal. However, in the presence of 8-OH-dG, the aptamer containing G-rich nucleic acid sequences would be induced to form a G-quadruplex structure, which made it impossible to continue the HCR. So the detection signal will significantly decrease. Under the optimal conditions, the peak current of RuHex was linear with the logarithm of 8-OH-dG concentration in the range from 10pM to 100µM with the detection limit of 2.5pM. By integrating the merits of enzyme-free amplification power of the HCR and the inherent high sensitivity of the electrochemical technique, the prepared aptasensor not only showed high sensitivity for the detection of 8-OH-dG, but also exhibited good selectivity against to the uric acid, an important interferent in the urine sample. Particularly, the aptasensor was applied to detect 8-OH-dG in urine samples with satisfactory results.


Asunto(s)
Aptámeros de Nucleótidos/química , Técnicas Biosensibles , Desoxiguanosina/análogos & derivados , Técnicas Electroquímicas , Hibridación de Ácido Nucleico/métodos , 8-Hidroxi-2'-Desoxicoguanosina , ADN/química , Desoxiguanosina/orina , Electrodos , G-Cuádruplex , Oro/química , Humanos , Límite de Detección , Compuestos de Rutenio/química
19.
Biosens Bioelectron ; 103: 6-11, 2018 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-29275222

RESUMEN

It is important to design a nice electrochemiluminescence (ECL) biological nanomaterial for fabricating sensitive ECL immunosensor to detect tumor markers. Most reported ECL nanomaterial was decorated by a number of mono-luminophore. Here, we report a novel ECL nanomaterial assembled by dual luminophores perylenetetracarboxylic acid (PTCA) and carbon quantum dots (CQDs). In the ECL nanomaterial, graphene was chosen as nanocarrier. Significant ECL intensity increases are seen in the ECL nanomaterial, which was interpreted with the proposed synergistic promotion ECL meachanism of PTCA and CQDs. Furthermore, this ECL nanomaterial was used to label secondary antibody and fabricate a sandwiched carcinoembryonic antigen (CEA) immunosensor. The CEA immunosensor exhibits high sensitivity and the linear semilogarithmical range was from 0.001fgmL-1 to 1ngmL-1 with low detection limit 0.00026fgmL-1. And the CEA immunosensor is also suitable for various cancers' sample detection providing potential specific applications in diagnostics.


Asunto(s)
Técnicas Biosensibles/métodos , Antígeno Carcinoembrionario/aislamiento & purificación , Grafito/química , Nanopartículas del Metal/química , Carbono/química , Ácidos Carboxílicos/química , Antígeno Carcinoembrionario/química , Oro/química , Humanos , Límite de Detección , Mediciones Luminiscentes , Nanoestructuras/química , Perileno/química , Puntos Cuánticos/química
20.
Biosens Bioelectron ; 89(Pt 1): 453-460, 2017 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-27151437

RESUMEN

In this study, a novel sandwiched electrochemiluminescence (ECL) immunosensor for the detection of carcinoembryonic antigen (CEA) was developed. The nanocomposite of polydopamine and Ag nanoparticles (PDA-AgNPs) was prepared by the redox reaction between Ag+ and dopamine. This nanocomposite not only provided an effective matrix for the immobilization of primary antibody (Ab1) but also enhanced the conductivity of the electrode. Carbon quantum dots (CQDs) were immobilized on the poly(ethylenimine) functionalized graphene oxide (PEI-GO) through amido-bond. Then Au nanoparticles were decorated on the CQDs modified PEI-GO matrix, and the resulted complex AuNPs/CQDs-PEI-GO was introduced to link secondary antibody (Ab2). The CQDs can be connected to the electrode surface through the combination of CEA with Ab1 and Ab2, and then the amplified electrochemiluminescence signal of CQDs was obtained with the synergistic effect of AgNPs, polydopamine, AuNPs and PEI-GO. Under the optimal conditions, the ECL intensity was proportional to the logarithm value of CEA concentration in the linear range from 5pgmL-1 to 500ngmL-1 with a detection limit of 1.67pgmL-1 for CEA detection. The immunosensor was applied for the CEA detection in real samples with satisfactory results. The proposed ECL immunosensor showed good performance with high sensitivity, specificity, reproducibility, stability and will be potential in clinical detection.


Asunto(s)
Anticuerpos Inmovilizados/química , Carbono/química , Antígeno Carcinoembrionario/sangre , Técnicas Electroquímicas/métodos , Indoles/química , Nanocompuestos/química , Polímeros/química , Puntos Cuánticos/química , Técnicas Biosensibles/métodos , Oro/química , Grafito/química , Humanos , Inmunoensayo/métodos , Límite de Detección , Mediciones Luminiscentes/métodos , Nanopartículas del Metal/química , Nanopartículas del Metal/ultraestructura , Nanocompuestos/ultraestructura , Polietileneimina/química , Reproducibilidad de los Resultados , Plata/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...