Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
2.
Plants (Basel) ; 12(9)2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37176806

RESUMEN

Plants produce an incredible variety of volatile organic compounds (VOCs) that assist the interactions with their environment, such as attracting pollinating insects and seed dispersers and defense against herbivores, pathogens, and parasites. Furthermore, VOCs have a significant economic impact on crop quality, as well as the beverage, food, perfume, cosmetics and pharmaceuticals industries. These VOCs are mainly classified as terpenoids, benzenoids/phenylpropanes, and fatty acid derivates. Fruits and vegetables are rich in minerals, vitamins, antioxidants, and dietary fiber, while aroma compounds play a major role in flavor and quality management of these horticultural commodities. Subtle shifts in aroma compounds can dramatically alter the flavor and texture of fruits and vegetables, altering their consumer appeal. Rapid innovations in -omics techniques have led to the isolation of genes encoding enzymes involved in the biosynthesis of several volatiles, which has aided to our comprehension of the regulatory molecular pathways involved in VOC production. The present review focuses on the significance of aroma volatiles to the flavor and aroma profile of horticultural crops and addresses the industrial applications of plant-derived volatile terpenoids, particularly in food and beverages, pharmaceuticals, cosmetics, and biofuel industries. Additionally, the methodological constraints and complexities that limit the transition from gene selection to host organisms and from laboratories to practical implementation are discussed, along with metabolic engineering's potential for enhancing terpenoids volatile production at the industrial level.

3.
J Exp Bot ; 74(12): 3613-3629, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-36928543

RESUMEN

In flowering plants, floral induction signals intersect at the shoot apex to modulate meristem determinacy and growth form. Here, we report a single-nucleus RNA sequence analysis of litchi apical buds at different developmental stages. A total of 41 641 nuclei expressing 21 402 genes were analyzed, revealing 35 cell clusters corresponding to 12 broad populations. We identify genes associated with floral transition and propose a model that profiles the key events associated with litchi floral meristem identity by analyzing 567 identified floral meristem cells at single cell resolution. Interestingly, single-nucleus RNA-sequencing data indicated that all putative FT and TFL1 genes were not expressed in bud nuclei, but significant expression was detected in bud samples by RT-PCR. Based on the expression patterns and gene silencing results, we highlight the critical role of LcTFL1-2 in inhibiting flowering and propose that the LcFT1/LcTFL1-2 expression ratio may determine the success of floral transition. In addition, the transport of LcFT1 and LcTFL1-2 mRNA from the leaf to the shoot apical meristem is proposed based on in situ and dot-blot hybridization results. These findings allow a more comprehensive understanding of the molecular events during the litchi floral transition, as well as the identification of new regulators.


Asunto(s)
Flores , Litchi , ARN Mensajero/genética , ARN Mensajero/metabolismo , Hojas de la Planta/metabolismo , Análisis de Secuencia de ARN/métodos , Meristema , Regulación de la Expresión Génica de las Plantas
4.
Plant Physiol ; 192(3): 1913-1927, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-36843134

RESUMEN

Chlorophyll degradation and anthocyanin biosynthesis, which often occur almost synchronously during fruit ripening, are crucial for vibrant coloration of fruits. However, the interlink point between their regulatory pathways remains largely unknown. Here, 2 litchi (Litchi chinensis Sonn.) cultivars with distinctively different coloration patterns during ripening, i.e. slow-reddening/stay-green "Feizixiao" (FZX) vs rapid-reddening/degreening "Nuomici" (NMC), were selected as the materials to study the key factors determining coloration. Litchi chinensis STAY-GREEN (LcSGR) was confirmed as the critical gene in pericarp chlorophyll loss and chloroplast breakdown during fruit ripening, as LcSGR directly interacted with pheophorbide a oxygenase (PAO), a key enzyme in chlorophyll degradation via the PAO pathway. Litchi chinensis no apical meristem (NAM), Arabidopsis transcription activation factor 1/2, and cup-shaped cotyledon 2 (LcNAC002) was identified as a positive regulator in the coloration of litchi pericarp. The expression of LcNAC002 was significantly higher in NMC than in FZX. Virus-induced gene silencing of LcNAC002 significantly decreased the expression of LcSGR as well as L. chinensis MYELOBLASTOSIS1 (LcMYB1), and inhibited chlorophyll loss and anthocyanin accumulation. A dual-luciferase reporter assay revealed that LcNAC002 significantly activates the expression of both LcSGR and LcMYB1. Furthermore, yeast-one-hybrid and electrophoretic mobility shift assay results showed that LcNAC002 directly binds to the promoters of LcSGR and LcMYB1. These findings suggest that LcNAC002 is an important ripening-related transcription factor that interlinks chlorophyll degradation and anthocyanin biosynthesis by coactivating the expression of both LcSGR and LcMYB1.


Asunto(s)
Antocianinas , Litchi , Antocianinas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Litchi/genética , Frutas/genética , Regulación de la Expresión Génica de las Plantas , Clorofila/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
Tree Physiol ; 43(1): 130-141, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-35951668

RESUMEN

Fruit abscission is a severe hindrance to commercial crop production, and a lack of carbohydrates causes fruit abscission to intensify in a variety of plant species. However, the precise mechanism by which carbohydrates affect fruit setting potential has yet to be determined. In the current study, we noticed negative correlation between hexose level and fruit setting by comparing different cultivars, bearing shoots of varying diameters, and girdling and defoliation treatments. The cumulative fruit-dropping rate was significantly reduced in response to exogenous glucose dipping. These results suggested that hexose, especially glucose, is the key player in lowering litchi fruit abscission. Moreover, five putative litchi hexokinase genes (LcHXKs) were isolated and the subcellular localization as well as activity of their expressed proteins in catalyzing hexose phosphorylation were investigated. LcHXK2 was only found in mitochondria and expressed catalytic protein, whereas the other four HXKs were found in both mitochondria and nuclei and had no activity in catalyzing hexose phosphorylation. LcHXK1 and LcHXK4 were found in the same cluster as previously reported hexose sensors AtHXK1 and MdHXK1. Furthermore, VIGS-mediated silencing assay confirms that LcHXK1 suppression increases fruit abscission. These findings revealed that LcHXK1 functions as hexose sensor, negatively regulating litchi fruit abscission.


Asunto(s)
Frutas , Litchi , Frutas/genética , Frutas/metabolismo , Hexoquinasa/genética , Hexoquinasa/metabolismo , Litchi/genética , Litchi/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Glucosa
6.
Physiol Plant ; 174(6): e13840, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36512339

RESUMEN

Plant volatile organic compounds are the most abundant and structurally diverse plant secondary metabolites. They play a key role in plant lifespan via direct and indirect plant defenses, attracting pollinators, and mediating various interactions between plants and their environment. The ecological diversity and context-dependence of plant-plant communication driven by volatiles are crucial elements that influence plant performance in different habitats. Plant volatiles are also valued for their multiple applications in food, flavor, pharmaceutical, and cosmetics industries. In the current review, we summarize recent advances that have elucidated the functions of plant volatile organic compounds as mediators of plant interaction at community and individual levels, highlighting the complexities of plant receiver feedback to various signals and cues. This review emphasizes volatile terpenoids, the most abundant class of plant volatile organic compounds, highlighting their role in plant adaptability to global climate change and stress-response pathways that are integral to plant growth and survival. Finally, we identify research gaps and suggest future research directions.


Asunto(s)
Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/metabolismo , Cambio Climático , Plantas/metabolismo , Aclimatación
7.
Cells ; 11(23)2022 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-36497177

RESUMEN

Recent advances in developmental biology have been made possible by using multi-omic studies at single cell resolution. However, progress in plants has been slowed, owing to the tremendous difficulty in protoplast isolation from most plant tissues and/or oversize protoplasts during flow cytometry purification. Surprisingly, rapid innovations in nucleus research have shed light on plant studies in single cell resolution, which necessitates high quality and efficient nucleus isolation. Herein, we present efficient nuclei isolation protocols from the leaves of ten important plants including Arabidopsis, rice, maize, tomato, soybean, banana, grape, citrus, apple, and litchi. We provide a detailed procedure for nucleus isolation, flow cytometry purification, and absolute nucleus number quantification. The nucleus isolation buffer formula of the ten plants tested was optimized, and the results indicated a high nuclei yield. Microscope observations revealed high purity after flow cytometry sorting, and the DNA and RNA quality extract from isolated nuclei were monitored by using the nuclei in cell division cycle and single nucleus RNA sequencing (snRNA-seq) studies, with detailed procedures provided. The findings indicated that nucleus yield and quality meet the requirements of snRNA-seq, cell division cycle, and likely other omic studies. The protocol outlined here makes it feasible to perform plant omic studies at single cell resolution.


Asunto(s)
Arabidopsis , Núcleo Celular , Núcleo Celular/metabolismo , Protoplastos , Arabidopsis/genética , Plantas/genética , Análisis de Secuencia de ARN
8.
Physiol Plant ; 174(6): e13796, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36251666

RESUMEN

Volatile organic compounds (VOCs) are essential traits of flowers since they attract pollinators, aid in seed distribution, protect the plant from internal and external stimuli, and are involved in plant-plant and plant-environment interactions. Apart from their role in plants, VOCs are used in pharmaceuticals, fragrances, cosmetics, and flavorings. Litchi (Litchi chinensis Sonn.) is a popular fruit due to its enticing red appearance, exotic taste, and high nutritional qualities. Litchi flowers bloom as inflorescences primarily on the shoot terminals. There are three distinct flower types, two male and one female, all of which are produced on the same panicle and rely on insect pollination. Herein, we used a comprehensive metabolomic approach to examine the volatile profile of litchi fruit (green pericarp, yellow pericarp, and red pericarp) as well as male and female flowers (bud stage, half open and full bloom). From a quantitative examination of the volatiles in L. chinensis, a total of 19, 22, and 21 VOCs were discovered from female flowers, male flowers, and fruits, with the majority of them belonging to sesquiterpenes. Multivariate analysis revealed that the volatile profiles of fruits differ from those of male and female flowers. Three VOCs were unique to male flowers and ten to the fruit, while eight VOCs were shared by both male and female flowers and eleven by both male and female flowers and the fruit. Furthermore, for the first time, we identified and comprehensively studied the TERPENE SYNTHASE genes (TPS) using the litchi genome and transcriptome database, which revealed 38 TPS genes unevenly distributed across the 15 chromosomes. A phylogenetic study showed that LcTPS were grouped into TPS-b, TPS-c, TPS-e, TPS-f, and TPS-g subfamilies, with TPS-b having the most genes. The conserved motifs (RRX8 W, NSE/DTE, and DDXX D) were studied in LcTPSs, and significant variation between subfamilies was discovered. Furthermore, after integrating the metabolome and transcriptome datasets, several VOCs were shown to be development-specific and highly linked with distinct LcTPS genes, making them promising biomarkers. Interestingly, LcTPS17/20/23/24/31 were associated with monoterpene edges, while the rest were connected to sesquiterpene edges, indicating their probable participation in the aroma biosynthesis mechanism of certain compounds.


Asunto(s)
Litchi , Sesquiterpenos , Litchi/genética , Odorantes , Filogenia , Perfilación de la Expresión Génica , Transcriptoma/genética , Metaboloma/genética
9.
J Psychiatry Neurosci ; 47(2): E153-E161, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35477683

RESUMEN

BACKGROUND: At present, the use of repetitive transcranial magnetic stimulation (rTMS) for generalized anxiety disorder (GAD) is limited to single-site interventions. We investigated whether dual-site frontoparietal stimulation delivered using cortical-cortical paired associative stimulation (ccPAS) had stronger clinical efficacy than single-site stimulation in patients with GAD. METHODS: We randomized 50 patients with GAD to 1 Hz rTMS (10 sessions) using 1 of the following protocols: single-site stimulation over the right dorsolateral prefrontal cortex (dlPFC; 1500 pulses per session); single-site stimulation over the right posterior parietal cortex (PPC; 1500 pulses per session); repetitive dual-site ccPAS (rds-ccPAS) over the right dlPFC and right PPC with 1500 pulses per session (rd-ccPAS-1500); or rds-ccPAS over the right dlPFC and right PPC with 750 pulses per session (rd-ccPAS-750). Both rds-ccPAS treatments used a between-site interval of 100 ms. RESULTS: Clinical scores for anxiety, depression and insomnia were reduced in all 4 groups after treatment. We found greater improvements in anxiety symptoms in the rds-ccPAS-1500 group compared to the rds-ccPAS-750 and single-site groups. We found greater improvements in depression symptoms and insomnia in the rds-PAS-1500 group compared to the single-site groups. The rds-ccPAS-1500 group also showed significant or trend-level improvements in anxiety symptoms and insomnia at 10-day and 1-month followup. More patients responded to treatment with rds-ccPAS-1500 than with single-site stimulation. The between-group differences in response rates persisted to the 3-month follow-up. Treatment using rds-ccPAS with a between-site interval of 100 ms induced a more significant improvement than the between-site interval of 50 ms we evaluated in a previous study. LIMITATIONS: These results need to be replicated in a larger sample using sham control and equal-pulse single-site stimulation. CONCLUSION: Frontoparietal rds-ccPAS may be a better treatment option for GAD.


Asunto(s)
Trastornos de Ansiedad , Estimulación Magnética Transcraneal , Trastornos de Ansiedad/terapia , Humanos , Lóbulo Parietal/fisiología , Proyectos Piloto , Trastornos del Inicio y del Mantenimiento del Sueño , Estimulación Magnética Transcraneal/métodos , Resultado del Tratamiento
10.
Front Plant Sci ; 13: 829635, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35310679

RESUMEN

Litchi is a highly perishable fruit. Ripe litchi fruit loses quality quickly as they hang on tree, giving a very short hanging life and thus harvest period. This study attempted to explore the roles of cytokinin in regulating fruit ripening and senescence of litchi and examine the possibility of applying cytokinin in "on-tree storage" of the fruit. Exogenous cytokinin, forchlorfenuron (CPPU), was applied at 20 mg L-1 7 weeks after full bloom on litchi (Litchi chinensis cv. Feizixiao) fruit clusters. Color parameters, chlorophylls, anthocyanins, fruit and fruit part weights, total soluble solutes (TSSs), soluble sugars, organic acids, non-anthocyanin flavonoids, ethanol, and also CPPU residue in fruit were traced. CPPU residue was higher but decreased faster in the pericarp than in the aril, where it maintained < 10 µg kg-1. CPPU had no significant effect on fruit weight but tended to increase pericarp weight. The treatment suppressed chlorophyll loss and anthocyanin accumulation in the pericarp, increased non-anthocyanin flavonoids in the aril, but had no significant effects on non-anthocyanin flavonoids in the pericarp and total sugar and organic acids in the aril. As the commercially ripe fruit hanged on tree, TSSs, total sugar, and sucrose decreased with ethanol and acetic acid accumulation in the aril. CPPU significantly suppressed the loss of sucrose and total sugar and the accumulation of ethanol and acetic acid in the aril and inhibited malondialdehyde accumulation in the pericarp of the overripe fruit. Soluble invertase, alcohol dehydrogenase, and pyruvate decarboxylase (PDC) activity and gene expression in the aril were downregulated by CPPU. The results suggest that cytokinin partially suppresses the ripening process in litchi and is effective to slow quality loss in the overripe fruit on tree.

11.
Plant J ; 106(3): 801-816, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33595139

RESUMEN

Elucidating the biochemical and molecular basis of premature abscission in fruit crops should help develop strategies to enhance fruit set and yield. Here, we report that LcERF2 contributes to differential abscission rates and responses to ethylene in Litchi chinensis (litchi). Reduced LcERF2 expression in litchi was observed to reduce fruit abscission, concurrent with enhanced pedicel growth and increased levels of hexoses, particularly galactose, as well as pectin abundance in the cell wall. Ecoptic expression of LcERF2 in Arabidopsis thaliana caused enhanced petal abscission, together with retarded plant growth and reduced pedicel galactose and pectin contents. Transcriptome analysis indicated that LcERF2 modulates the expression of genes involved in cell wall modification. Yeast one-hybrid, dual-luciferase reporter and electrophoretic mobility shift assays all demonstrated that a UDP-glucose-4-epimerase gene (LcUGE) was the direct downstream target of LcERF2. This result was further supported by a significant reduction in the expression of the A. thaliana homolog AtUGE2-4 in response to LcERF2 overexpression. Significantly reduced pedicel diameter and enhanced litchi fruit abscission were observed in response to LcUGE silencing. We conclude that LcERF2 mediates fruit abscission by orchestrating cell wall metabolism, and thus pedicel growth, in part by repressing the expression of LcUGE.


Asunto(s)
Pared Celular/metabolismo , Frutas/metabolismo , Litchi/metabolismo , Proteínas de Plantas/metabolismo , UDPglucosa 4-Epimerasa/metabolismo , Arabidopsis , Ensayo de Cambio de Movilidad Electroforética , Frutas/enzimología , Frutas/crecimiento & desarrollo , Perfilación de la Expresión Génica , Genes de Plantas/genética , Litchi/enzimología , Litchi/crecimiento & desarrollo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , UDPglucosa 4-Epimerasa/genética
12.
World J Gastrointest Oncol ; 13(12): 2129-2148, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-35070047

RESUMEN

BACKGROUND: BRAFV600E mutated colorectal cancer (CRC) is prone to peritoneal and distant lymph node metastasis and this correlates with a poor prognosis. The BRAFV600E mutation is closely related to the formation of an immunosuppressive microenvironment. However, the correlation between BRAFV600E mutation and changes in local immune microenvironment of CRC is not clear. AIM: To explore the effect and mechanism of BRAFV600E mutant on the immune microenvironment of CRC. METHODS: Thirty patients with CRC were included in this study: 20 in a control group and 10 in a treatment group. The density of microvessels and microlymphatic vessels, and M2 subtype macrophages in tumor tissues were detected by immunohistochemistry. Screening and functional analysis of exosomal long noncoding RNAs (lncRNAs) were performed by transcriptomics. The proliferation and migration of human umbilical vein endothelial cells (HUVECs) and human lymphatic endothelial cells (HLECs) were detected by CCK-8 assay and scratch test, respectively. The tube-forming ability of endothelial cells was detected by tube formation assay. The macrophage subtypes were obtained by flow cytometry. The expression of vascular endothelial growth factor (VEGF)-A, basic fibroblast growth factor (bFGF), transforming growth factor (TGF)-ß1, VEGF-C, claudin-5, occludin, zonula occludens (ZO)-1, fibroblast activation protein, and α-smooth muscle actin was assessed by western blot analysis. The levels of cytokines interleukin (IL)-6, TGF-ß1, and VEGF were assessed by enzyme-linked immunosorbent assay. RESULTS: BRAFV600E mutation was positively correlated with the increase of preoperative serum carbohydrate antigen 19-9 (P < 0.05), and with poor tumor tissue differentiation in CRC (P < 0.01). Microvascular density and microlymphatic vessel density in BRAFV600E mutant CRC tissues were higher than those in BRAF wild-type CRC (P < 0.05). The number of CD163+ M2 macrophages in BRAFV600E mutant CRC tumor tissue was markedly increased (P < 0.05). Compared with exosomes from CRC cells with BRAF gene silencing, the expression of 13 lncRNAs and 192 mRNAs in the exosomes from BRAFV600E mutant CRC cells was upregulated, and the expression of 22 lncRNAs and 236 mRNAs was downregulated (P < 0.05). The biological functions and signaling pathways predicted by differential lncRNA target genes and differential mRNAs were closely related to angiogenesis, tumor cell proliferation, differentiation, metabolism, and changes in the microenvironment. The proliferation, migration, and tube formation ability of HUVECs and HLECs induced by exosomes in the 1627 cell group (HT29 cells with BRAF gene silencing) was greatly reduced compared with the HT29 cell group (P < 0.05). Compared with the HT29 cell group, the expression levels of VEGF-A, bFGF, TGF-ß1, and VEGF-C in the exosomes derived from 1627 cells were reduced. The expression of ZO-1 in HUVECs, and claudin-5, occludin, and ZO-1 in HLECs of the 1627 cell group was higher. Compared with the 1627 cell group, the exosomes of the HT29 cell group promoted the expression of CD163 in macrophages (P < 0.05). IL-6 secretion by macrophages in the HT29 cell group was markedly elevated (P < 0.05), whereas TGF-ß1 was decreased (P < 0.05). The levels of IL-6, TGF-ß1, and VEGF secreted by fibroblasts in the 1627 cell group decreased, compared with the HT29 cell group (P < 0.05). CONCLUSION: BRAFV600E mutant CRC cells can reach the tumor microenvironment by releasing exosomal lncRNAs, and induce the formation of an immunosuppressive microenvironment.

13.
BMC Plant Biol ; 19(1): 62, 2019 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-30732564

RESUMEN

BACKGROUND: Maturation of litchi (Litchi chinensis) fruit is characterized by dramatic changes in pigments in the pericarp and flavor compounds in the aril. Among them, the biosynthesis of anthocyanins is most noticeable. Previous studies showed that LcMYB1 and LcbHLH transcription factors participated in regulating the anthocyanin biosynthesis in litchi. However, the roles of other MYB factors remain unclear. RESULTS: In this study, we cloned and characterized the function of LcMYB5, a novel R2R3-MYB identified from litchi transcriptome. Although LcMYB5 was constitutively expressed in litchi tissues and its expressions was not correlated with tissue coloration, overexpression of LcMYB5 resulted in enhanced biosynthesis of anthocyanins in tobacco and petunia concurrent with the up-regulation of their endogenous bHLHs and key structural genes in anthocyanin precursor biosynthesis. These results indicate that LcMYB5 is an R2R3 transcriptional factor regulates anthocyanin biosynthesis either by directly activating the expression of key structural genes such as DFR or by indirectly up regulating the expressions of endogenous bHLH regulators. More interestingly, the pH values in petals and leaves from transgenic lines were significant lower than those in both untransformed tobacco and petunia, indicating LcMYB5 is also associated with pH regulation. The expressions of LcMYB5 and its bHLH partner LcbHLH1 were consistent with the expression of putative tissue acidification gene LcPH1, and the changes in malic acid provided further evidence for the close relationship between LcMYB5 and tissue acidification. CONCLUSIONS: Taking together, our study indicated that LcMYB5 is involved in not only anthocyanin biosynthesis but also tissue acidification.


Asunto(s)
Antocianinas/metabolismo , Litchi/metabolismo , Factores de Transcripción/metabolismo , Frutas/genética , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Litchi/genética , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética
14.
Immunol Invest ; 48(2): 169-180, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30273064

RESUMEN

BACKGROUND: We carried out a meta-analysis to assess whether Toll-like receptor 2 (TLR2) rs5743708 and Toll-like receptor 4 (TLR4) rs4986790 polymorphisms are associated with the risk of atopic dermatitis. METHODS: A systematic search of PubMed, Embase, and Web of Science was performed to identify eligible case-control studies on the association of rs5743708 and rs4986790 with the risk of atopic dermatitis. Statistical analyses of the odds ratio (OR), 95% confidence interval (CI), and p value were performed using STATA software. RESULTS: Our meta-analysis included a total of nine case-control studies, all involving Caucasian populations. With respect to the TLR2 rs5743708 G/A polymorphism, there was a statistically significant difference in the overall risk of atopic dermatitis between the case and control groups [OR = 2.07, p value of association test, p(association) = 0.001 in allele (A vs. G) model; OR = 1.93, p(association) = 0.004 in carrier (A vs. G) model; OR = 2.07, p(association) = 0.001 in heterozygote (GA vs. GG) model; OR = 1.99, p(association) = 0.001 in dominant (GA+ AA vs. GG) model]. Similar positive results were observed in the subgroup analysis of "population-based control." For the TLR4 rs4986790 A/G polymorphism, an increased atopic dermatitis risk was detected in the case group under the allele [OR = 1.78, p(association) = 0.013], carrier [OR = 1.69, p(association) = 0.027] and heterozygote [OR = 1.74, p(association) = 0.020] models, but not the dominant [OR = 1.44, p(association) = 0.070] model, in comparison to the population-based control group. CONCLUSION: Our meta-analysis revealed a novel finding that the heterogeneous "GA" genotype of the TLR2 rs5743708 and "AG" genotype of the TLR4 rs4986790 may be associated with increased susceptibility to atopic dermatitis in Caucasians.


Asunto(s)
Alelos , Dermatitis Atópica/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple , Receptor Toll-Like 2/genética , Receptor Toll-Like 4/genética , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Encéfalo/patología , Estudios de Casos y Controles , Dermatitis Atópica/diagnóstico , Frecuencia de los Genes , Estudios de Asociación Genética/métodos , Genotipo , Humanos , Oportunidad Relativa , Sesgo de Publicación , Medición de Riesgo
15.
J Exp Bot ; 69(7): 1649-1661, 2018 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-29281092

RESUMEN

Although methylated cyclitols constitute a major proportion of the carbohydrates in many plant species, their physiological roles and biosynthetic pathway are largely unknown. Quebrachitol (2-O-methyl-chiro-inositol) is one of the major methylated cyclitols in some plant species. In litchi, quebrachitol represents approximately 50% of soluble sugars in mature leaves and 40% of the total sugars in phloem exudate. In the present study, we identified bornesitol as a transient methylated intermediate of quebrachitol and measured the concentrations of methyl-inositols in different tissues and in tissues subjected to different treatments. 14CO2 feeding and phloem exudate experiments demonstrated that quebrachitol is one of the transportable photosynthates. In contrast to other plant species, the biosynthesis of quebrachitol in litchi is not associated with osmotic stress. High quebrachitol concentrations in tissues of the woody plant litchi might represent a unique carbon metabolic strategy that maintains osmolality under reduced-sucrose conditions. The presence of bornesitol but not ononitol in the leaves indicates a different biosynthetic pathway with pinitol. The biosynthesis of quebrachitol involves the methylation of myo-inositol and the subsequent epimerization of bornesitol. An inositol methyltransferase gene (LcIMT1) responsible for bornesitol biosynthesis was isolated and characterized for the first time, and the biosynthesis pathways of methyl-inositols are discussed.


Asunto(s)
Inositol/análogos & derivados , Litchi/metabolismo , Floema/fisiología , Transporte Biológico , Inositol/biosíntesis , Litchi/química , Metilación , Metiltransferasas/genética , Metiltransferasas/metabolismo , Presión Osmótica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
16.
Front Plant Sci ; 8: 2228, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29375603

RESUMEN

Calcium (Ca) deficiency in fruit causes various physiological disorders leading to quality loss. However, disorders related to Ca deficiency are not simply caused by a shortage of calcium supply. Ca distribution is also an important relation. This study examined Ca distribution pattern in fruit and pedicel in litchi (Litchi chinensis Sonn.) and the influence of Ca channel inhibitor La3+ on fruit Ca uptake and distribution. In situ distribution of Ca in the phloem and xylem tissues of the pedicel was visualized by Ca mapping with X-ray microanalyzer. Ca2+ analogy Sr2+ was used to trace Ca2+ transport pathway to fruit as well as distribution pattern. The results showed Ca was more distributed in the pericarp, especially the distal part. Ca level in the bark/phloem was always significantly higher than in the xylem and increased with stem age, suggesting constant influx of Ca into the phloem from the xylem. La3+ increased the ratio of Ca in the xylem to that in the bark in the pedicel and significantly reduced Ca accumulation by 55.6% in fruit, suggesting influx of Ca into the symplast was involved in fruit Ca uptake. Sr2+ introduced from fruit stalk was found to be transported to fruit through the phloem as Sr was largely distributed in the phloem, and fruit stalk girdling significantly reduced Sr accumulation in the pericarp. Ca mapping across the pedicel revealed Ca-rich sites in the parenchyma cells in the phloem and along the cambium, where abundant Ca oxalate crystals were found. The results suggested extensive influx of Ca from xylem/apoplast pathway into the phloem/symplast pathway in the pedicel, which enables phloem/symplast pathway to contribute a considerable part to Ca uptake in litchi fruit.

17.
Front Plant Sci ; 7: 963, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27446187

RESUMEN

Light is a key environmental factor that affects anthocyanin biosynthesis. To enhance our understanding of the mechanisms involved in light-regulated anthocyanin biosynthesis in the pericarp of litchi, we performed transcriptomic analyses on the basis of Illumina sequencing. Fruit clusters were bagged with double-layer Kraft paper bags at 42 days after anthesis. The bags were removed after 2 weeks. Under light conditions, anthocyanins accumulated rapidly in the pericarp. RNA sequences were de novo assembled into 75,935 unigenes with an average length of 913 bp. Approximately 74.5% of unigenes (56,601) were annotated against four public protein databases. A total of 16,622 unigenes that significantly differed in terms of abundance were identified. These unigenes are implicated in light signal perception and transduction, flavonoid biosynthesis, carotenoid biosynthesis, plant hormone signal transduction, and photosynthesis. In photoreceptors, the expression levels of UV RESISTANCE LOCUS 8 (UVR8), Phototropin 2 (PHOT2), Phytochrome B (PHYB), and Phytochrome C (PHYC) increased significantly when the fruits were exposed to light. This result indicated that they likely play important roles in anthocyanin biosynthesis regulation. After analyzed digital gene expression (DGE), we found that the light signal transduction elements of COP1 and COP10 might be responsible for anthocyanin biosynthesis regulation. After the bags were removed, nearly all structural and regulatory genes, such as UDP-glucose: flavonoid-3-O-glucosyltransferase (UFGT), MYB, basic helix-loop-helix (bHLH), and WD40, involved in the anthocyanin biosynthetic pathway were upregulated. In addition to MYB-bHLH-WD40 transcription complex, ELONGATED HYPOCOTYL (HY5), NAM/ATAF/CUC (NAC), homeodomain leucine zipper proteins (ATHBs), and FAR-RED ELONGATED HYPOCOTYL (FHY) possibly participate in light-induced responses. On the basis of DGEs and qRT-PCR validation, we observed a light-induced anthocyanin biosynthesis and regulation pattern in litchi pericarp. This study enhanced our understanding of the molecular mechanisms governing light-induced anthocyanin biosynthesis in litchi pericarp.

18.
Int J Food Sci Nutr ; 67(7): 762-72, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27314889

RESUMEN

The available components in the flesh of litchi seem insufficient to interpret its wide and significant physiological effects. Some unusual compounds, including myo-inositol, inositol methyl derivatives and γ-aminobutyric acid (GABA) were identified as main constituents in the flesh of litchi. Their concentrations varied among cultivars but remain relatively constant during development. Litchi flesh was shown to contain moderate myo-inositol (0.28-0.78 mg g(-1) FW), ascorbic acid (0.08-0.39 mg g(-1) FW) and phenolics (0.47-1.60 mg g(-1) FW), but abundant l-quebrachitol (1.6-6.4 mg g(-1) FW) and GABA (1.7-3.5 mg g(-1) FW). The concentration of GABA in the flesh of litchi was about 100 times higher than in other fruits. And l-quebrachitol is not a common component in fruits. The biological and physiological activities of inositols, inositol derivatives and GABA have been extensively documented. These compounds are probably important compositional characteristic contributing to the widely shown health benefits of litchi.


Asunto(s)
Inositol/análogos & derivados , Litchi/química , Ácido gamma-Aminobutírico/análisis , Aminoácidos/análisis , Ácido Ascórbico/análisis , Flavonoides/análisis , Frutas/química , Inositol/análisis , Fenoles/análisis
19.
Front Plant Sci ; 7: 166, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26925082

RESUMEN

Anthocyanin biosynthesis requires the MYB-bHLH-WD40 protein complex to activate the late biosynthetic genes. LcMYB1 was thought to act as key regulator in anthocyanin biosynthesis of litchi. However, basic helix-loop-helix proteins (bHLHs) as partners have not been identified yet. The present study describes the functional characterization of three litchi bHLH candidate anthocyanin regulators, LcbHLH1, LcbHLH2, and LcbHLH3. Although these three litchi bHLHs phylogenetically clustered with bHLH proteins involved in anthcoyanin biosynthesis in other plant, only LcbHLH1 and LcbHLH3 were found to localize in the nucleus and physically interact with LcMYB1. The transcription levels of all these bHLHs were not coordinated with anthocyanin accumulation in different tissues and during development. However, when co-infiltrated with LcMYB1, both LcbHLH1 and LcbHLH3 enhanced anthocyanin accumulation in tobacco leaves with LcbHLH3 being the best inducer. Significant accumulation of anthocyanins in leaves transformed with the combination of LcMYB1 and LcbHLH3 were noticed, and this was associated with the up-regulation of two tobacco endogenous bHLH regulators, NtAn1a and NtAn1b, and late structural genes, like NtDFR and NtANS. Significant activity of the ANS promoter was observed in transient expression assays either with LcMYB1-LcbHLH1 or LcMYB1-LcbHLH3, while only minute activity was detected after transformation with only LcMYB1. In contrast, no activity was measured after induction with the combination of LcbHLH2 and LcMYB1. Higher DFR expression was also oberseved in paralleling with higher anthocyanins in co-transformed lines. LcbHLH1 and LcbHLH3 are essential partner of LcMYB1 in regulating the anthocyanin production in tobacco and probably also in litchi. The LcMYB1-LcbHLH complex enhanced anthocyanin accumulation may associate with activating the transcription of DFR and ANS.

20.
Physiol Plant ; 156(2): 139-149, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26419221

RESUMEN

Anthocyanins generate the red color in the pericarp of Litchi chinensis. UDP-glucose: flavonoid 3-O-glycosyltransferase (UFGT, EC. 2.4.1.91) stabilizes anthocyanidin by attaching sugar moieties to the anthocyanin aglycone. In this study, the function of an UFGT gene involved in the biosynthesis of anthocyanin was verified through heterologous expression and virus-induced gene silencing assays. A strong positive correlation between UFGT activity and anthocyanin accumulation capacity was observed in the pericarp of 15 cultivars. Four putative flavonoid 3-O-glycosyltransferase-like genes, designated as LcUFGT1 to LcUFGT4, were identified in the pericarp of litchi. Among the four UFGT gene members, only LcUFGT1 can use cyanidin as its substrate. The expression of LcUFGT1 was parallel with developmental anthocyanin accumulation, and the heterologously expressed protein of LcUFGT1 displayed catalytic activities in the formation of anthocyanin. The LcUFGT1 over-expression tobacco had darker petals and pigmented filaments and calyxes resulting from higher anthocyanin accumulations compared with non-transformed tobacco. In the pericarp with LcUFGT1 suppressed by virus-induced gene silencing, pigmentation was retarded, which was well correlated with the reduced-LcUFGT1 transcriptional activity. These results suggested that the glycosylation-related gene LcUFGT1 plays a critical role in red color formation in the pericarp of litchi.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...