Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancer Commun (Lond) ; 44(2): 226-250, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38143235

RESUMEN

BACKGROUND: Intrahepatic cholangiocarcinoma (iCCA) is a highly heterogeneous and lethal hepatobiliary tumor with few therapeutic strategies. The metabolic reprogramming of tumor cells plays an essential role in the development of tumors, while the metabolic molecular classification of iCCA is largely unknown. Here, we performed an integrated multiomics analysis and metabolic classification to depict differences in metabolic characteristics of iCCA patients, hoping to provide a novel perspective to understand and treat iCCA. METHODS: We performed integrated multiomics analysis in 116 iCCA samples, including whole-exome sequencing, bulk RNA-sequencing and proteome analysis. Based on the non-negative matrix factorization method and the protein abundance of metabolic genes in human genome-scale metabolic models, the metabolic subtype of iCCA was determined. Survival and prognostic gene analyses were used to compare overall survival (OS) differences between metabolic subtypes. Cell proliferation analysis, 5-ethynyl-2'-deoxyuridine (EdU) assay, colony formation assay, RNA-sequencing and Western blotting were performed to investigate the molecular mechanisms of diacylglycerol kinase α (DGKA) in iCCA cells. RESULTS: Three metabolic subtypes (S1-S3) with subtype-specific biomarkers of iCCA were identified. These metabolic subtypes presented with distinct prognoses, metabolic features, immune microenvironments, and genetic alterations. The S2 subtype with the worst survival showed the activation of some special metabolic processes, immune-suppressed microenvironment and Kirsten rat sarcoma viral oncogene homolog (KRAS)/AT-rich interactive domain 1A (ARID1A) mutations. Among the S2 subtype-specific upregulated proteins, DGKA was further identified as a potential drug target for iCCA, which promoted cell proliferation by enhancing phosphatidic acid (PA) metabolism and activating mitogen-activated protein kinase (MAPK) signaling. CONCLUSION: Via multiomics analyses, we identified three metabolic subtypes of iCCA, revealing that the S2 subtype exhibited the poorest survival outcomes. We further identified DGKA as a potential target for the S2 subtype.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Humanos , Diacilglicerol Quinasa/genética , Multiómica , Colangiocarcinoma/genética , Conductos Biliares Intrahepáticos/metabolismo , Neoplasias de los Conductos Biliares/genética , ARN/uso terapéutico , Microambiente Tumoral
2.
Methods Mol Biol ; 2581: 403-412, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36413333

RESUMEN

Intrinsically disordered protein domains are those with high disorder proportion or a consecutive disordered region. They have no stable spatial structure but play an important role in the regulation of complex cellular functions and contribute to the increasing organism complexity during evolution. Here, we describe the approaches to predict intrinsic disorder values of residues in proteins and methods to identify the intrinsically disordered domains.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Conformación Proteica
3.
Materials (Basel) ; 15(15)2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-35955315

RESUMEN

The foamed lightweight soil (FLS) with superior performance was prepared to be used as a subgrade filling material in an intelligent networked vehicle test site. The production process of practical engineering FLS is simulated in the laboratory. The performance of the prepared FLS is the same as that of practical engineering. The test results show that the FLS prepared with 30% cement, 30% granulated blast furnace slag, and 40% fly ash as cementing material has a flow factor of 175 mm. It has good fluidity and is easy to pump. Wet density reaches 593 kg/m3 within the range of the control index of 600 ± 30 kg/m3. The compressive strength of 7 d and 28 d reaches 0.82 MPa and 1.90 MPa, respectively, which is higher than the design strength of 0.5 MPa and 1.0 MPa. Compared with FLS made of pure cement as a cementing material, the FLS has a low heat of hydration, good volume stability, no cracks on the surface, excellent sulfate resistance, good economy, and low carbon characteristics. In the meantime, it can reduce 70% CO2 emissions in cement production. The advanced vehicle-mounted mobile intelligent control system is flexible and convenient in actual engineering construction. It can display the wet density of FLS online, which is easy to adjust and control to ensure the quality stability of FLS.

4.
Int J Mol Sci ; 22(19)2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34639018

RESUMEN

The consecutive disordered regions (CDRs) are the basis for the formation of intrinsically disordered proteins, which contribute to various biological functions and increasing organism complexity. Previous studies have revealed that CDRs may be present inside or outside protein domains, but a comprehensive analysis of the property differences between these two types of CDRs and the proteins containing them is lacking. In this study, we investigated this issue from three viewpoints. Firstly, we found that in-domain CDRs are more hydrophilic and stable but have less stickiness and fewer post-translational modification sites compared with out-domain CDRs. Secondly, at the protein level, we found that proteins with only in-domain CDRs originated late, evolved rapidly, and had weak functional constraints, compared with the other two types of CDR-containing proteins. Proteins with only in-domain CDRs tend to be expressed spatiotemporal specifically, but they tend to have higher abundance and are more stable. Thirdly, we screened the CDR-containing protein domains that have a strong correlation with organism complexity. The CDR-containing domains tend to be evolutionarily young, or they changed from a domain without CDR to a CDR-containing domain during evolution. These results provide valuable new insights about the evolution and function of CDRs and protein domains.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/metabolismo , Dominios Proteicos , Dominios y Motivos de Interacción de Proteínas , Secuencia de Aminoácidos , Fenómenos Químicos , Expresión Génica , Humanos , Proteínas Intrínsecamente Desordenadas/genética , Unión Proteica , Relación Estructura-Actividad
5.
Sci Rep ; 11(1): 2985, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33542394

RESUMEN

Interestingly, some protein domains are intrinsically disordered (abbreviated as IDD), and the disorder degree of same domains may differ in different contexts. However, the evolutionary causes and biological significance of these phenomena are unclear. Here, we address these issues by genome-wide analyses of the evolutionary and functional features of IDDs in 1,870 species across the three superkingdoms. As the result, there is a significant positive correlation between the proportion of IDDs and organism complexity with some interesting exceptions. These phenomena may be due to the high disorder of clade-specific domains and the different disorder degrees of the domains shared in different clades. The functions of IDDs are clade-specific and the higher proportion of post-translational modification sites may contribute to their complex functions. Compared with metazoans, fungi have more IDDs with a consecutive disorder region but a low disorder ratio, which reflects their different functional requirements. As for disorder variation, it's greater for domains among different proteins than those within the same proteins. Some clade-specific 'no-variation' or 'high-variation' domains are involved in clade-specific functions. In sum, intrinsic domain disorder is related to both the organism complexity and clade-specific functions. These results deepen the understanding of the evolution and function of IDDs.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/genética , Conformación Proteica , Dominios Proteicos/genética , Proteínas/genética , Secuencia de Aminoácidos/genética , Animales , Biología Computacional , Evolución Molecular , Hongos/química , Hongos/genética , Genoma/genética , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/ultraestructura , Proteínas/química , Proteínas/ultraestructura
6.
BMC Mol Cell Biol ; 22(1): 7, 2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33482715

RESUMEN

BACKGROUND: One striking feature of the large KRAB domain-containing zinc finger protein (KZFP) family is its rapid evolution, leading to hundreds of member genes with various origination time in a certain mammalian genome. However, a comprehensive genome-wide and across-taxa analysis of the structural and expressional features of KZFPs with different origination time is lacking. This type of analysis will provide valuable clues about the functional characteristics of this special family. RESULTS: In this study, we found several conserved paradoxical phenomena about this issue. 1) Ordinary young domains/proteins tend to be disordered, but most of KRAB domains are completely structured in 64 representative species across the superclass of Sarcopterygii and most of KZFPs are also highly structured, indicating their rigid and unique structural and functional characteristics; as exceptions, old-zinc-finger-containing KZFPs have relatively disordered KRAB domains and linker regions, contributing to diverse interacting partners and functions. 2) In general, young or highly structured proteins tend to be spatiotemporal specific and have low abundance. However, by integrated analysis of 29 RNA-seq datasets, including 725 samples across early embryonic development, embryonic stem cell differentiation, embryonic and adult organs, tissues in 7 mammals, we found that KZFPs tend to express ubiquitously with medium abundance regardless of evolutionary age and structural disorder degree, indicating the wide functional requirements of KZFPs in various states. 3) Clustering and correlation analysis reveal that there are differential expression patterns across different spatiotemporal states, suggesting the specific-high-expression KZFPs may play important roles in the corresponding states. In particular, part of young-zinc-finger-containing KZFPs are highly expressed in early embryonic development and ESCs differentiation into endoderm or mesoderm. Co-expression analysis revealed that young-zinc-finger-containing KZFPs are significantly enriched in five co-expression modules. Among them, one module, including 13 young-zinc-finger-containing KZFPs, showed an 'early-high and late-low' expression pattern. Further functional analysis revealed that they may function in early embryonic development and ESC differentiation via participating in cell cycle related processes. CONCLUSIONS: This study shows the conserved and special structural, expressional features of KZFPs, providing new clues about their functional characteristics and potential causes of their rapid evolution.


Asunto(s)
Evolución Molecular , Regulación de la Expresión Génica , Proteínas Represoras/química , Proteínas Represoras/genética , Dedos de Zinc , Animales , Mamíferos/genética , Filogenia , Dominios Proteicos , Proteínas Represoras/metabolismo
7.
Microb Pathog ; 129: 1-6, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30703474

RESUMEN

To persist in the host, Salmonella is known to facultatively parasitize cells to escape the immune response. Intracellular Salmonella enterica can replicate using effector proteins translocated across the Salmonella-containing vacuolar membrane via a type III secretion system (T3SS) encoded by Salmonella pathogenicity island-2 (SPI-2). One of these factors, Salmonella secreted factor L (SseL), is a deubiquitinase that contributes to the virulence of Salmonella Typhimurium in mice by inhibiting the cellular NF-κB inflammatory pathway. However, the nature of its effect on the NF-κB pathway is controversial, and little research has been performed in other animal models. In this study, the SseL of Salmonella Pullorum was studied, and chickens were used as an infection model. An sseL gene deletion strain, a complementation strain and a eukaryotic expression plasmid were used to clarify the means by which SseL regulates Salmonella virulence and the cellular inflammatory response. SseL significantly enhanced the virulence of Salmonella Pullorum in chickens and suppressed activation of the cellular NF-κB pathway, thus inhibiting cellular inflammatory cytokine expression.


Asunto(s)
Proteínas Bacterianas/metabolismo , Interacciones Huésped-Patógeno , Evasión Inmune , FN-kappa B/antagonistas & inhibidores , Salmonelosis Animal/patología , Salmonella enterica/patogenicidad , Factores de Virulencia/metabolismo , Animales , Proteínas Bacterianas/genética , Pollos , Eliminación de Gen , Prueba de Complementación Genética , Enfermedades de las Aves de Corral/microbiología , Enfermedades de las Aves de Corral/patología , Salmonelosis Animal/microbiología , Virulencia , Factores de Virulencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...