Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Ophthalmic Vis Res ; 19(2): 172-182, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39055502

RESUMEN

Purpose: To validate a convolutional neural network (CNN)-based smartphone application for the identification of glaucoma eye drop medications in patients with normal and impaired vision. Methods: Sixty-eight patients with visual acuity (VA) of 20/70 or worse in at least one eye who presented to an academic glaucoma clinic from January 2021 through August 2022 were included. Non-English-speaking patients were excluded. Enrolled subjects participated in an activity in which they identified a predetermined and preordered set of six topical glaucoma medications, first without the CNN and then with the CNN for a total of six sequential measurements per subject. Responses to a standardized survey were collected during and after the activity. Primary quantitative outcomes were medication identification accuracy and time. Primary qualitative outcomes were subjective ratings of ease of smartphone application use. Results: Topical glaucoma medication identification accuracy (OR = 12.005, P < 0.001) and time (OR = 0.007, P < 0.001) both independently improved with CNN use. CNN use significantly improved medication accuracy in patients with glaucoma (OR = 4.771, P = 0.036) or VA ≤ 20/70 in at least one eye (OR = 4.463, P = 0.013) and medication identification time in patients with glaucoma (OR = 0.065, P = 0.017). CNN use had a significant positive association with subject-reported ease of medication identification (X2(1) = 66.117, P < 0.001). Conclusion: Our CNN-based smartphone application is efficacious at improving glaucoma eye drop identification accuracy and time. This tool can be used in the outpatient setting to avert preventable vision loss by improving medication adherence in patients with glaucoma.

2.
bioRxiv ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38895287

RESUMEN

Our sense of hearing is critically dependent on the spiral ganglion neurons (SGNs) that connect the sound receptors in the organ of Corti (OC) to the cochlear nuclei of the hindbrain. Type I SGNs innervate inner hair cells (IHCs) to transmit sound signals, while type II SGNs (SGNIIs) innervate outer hair cells (OHCs) to detect moderate-to-intense sound. During development, SGNII afferents make a characteristic 90-degree turn toward the base of the cochlea and innervate multiple OHCs. It has been shown that the Planar Cell Polarity (PCP) pathway acts non-autonomously to mediate environmental cues in the cochlear epithelium for SGNII afferent turning towards the base. However, the underlying mechanisms are unknown. Here, we present evidence that PCP signaling regulates multiple downstream effectors to influence cell adhesion and the cytoskeleton in cochlear supporting cells (SCs), which serve as intermediate targets of SGNII afferents. We show that the core PCP gene Vangl2 regulates the localization of the small GTPase Rac1 and the cell adhesion molecule Nectin3 at SC-SC junctions through which SGNII afferents travel. Through in vivo genetic analysis, we also show that loss of Rac1 or Nectin3 partially phenocopied SGNII peripheral afferent turning defects in Vangl2 mutants, and that Rac1 plays a non-autonomous role in this process in part by regulating PCP protein localization at the SC-SC junctions. Additionally, epistasis analysis indicates that Nectin3 and Rac1 likely act in the same genetic pathway to control SGNII afferent turning. Together, these experiments identify Nectin3 and Rac1 as novel regulators of PCP-directed SGNII axon guidance in the cochlea.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA