Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Math Biosci Eng ; 20(12): 20995-21031, 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-38124585

RESUMEN

Blockchain technology, marked as a disruptive force across various sectors, including seaport logistics, faces challenges and obstacles that impede its effective adoption. We aim to empirically identify the significant barriers impeding blockchain adoption in the seaport industry and elucidate the interconnected relationships between these impediments. Utilizing the Fuzzy Decision-Making Trial and Evaluation Laboratory Analysis (Fuzzy DEMATEL) technique, we quantify the cause-and-effect relationships between various barriers to blockchain adoption. Structured interviews involving 18 experts were conducted, collecting both qualitative interview data and quantitative data. The nature of ports and the maritime industry did not seem to be accurately reflected in the literature about blockchain adoption, presenting several new findings in this study. Four primary obstacles were identified: 1) Lack of management support and commitment. 2) Issues in supply chain collaboration, communication and coordination. 3) Resistance from and lack of involvement of external stakeholders. 4) The high cost. Furthermore, cost was reaffirmed as a significant factor influencing blockchain adoption. We enhance existing literature by revealing the interdependencies among identified barriers and offers insights for policymakers and industry practitioners. We aim to foster successful blockchain integration in the seaport industry, improving its sustainability performance. During this research, it has been acknowledged by the business sector that the effective employment of business process re-engineering (BPR) and the strategic implementation of blockchain technology are crucial strategies to surmount the obstacles that have impeded the extensive integration of blockchain within port operations.

2.
Stem Cell Reports ; 12(3): 474-487, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30773484

RESUMEN

There is a profound need for functional, biomimetic in vitro tissue constructs of the human blood-brain barrier and neurovascular unit (NVU) to model diseases and identify therapeutic interventions. Here, we show that induced pluripotent stem cell (iPSC)-derived human brain microvascular endothelial cells (BMECs) exhibit robust barrier functionality when cultured in 3D channels within gelatin hydrogels. We determined that BMECs cultured in 3D under perfusion conditions were 10-100 times less permeable to sodium fluorescein, 3 kDa dextran, and albumin relative to human umbilical vein endothelial cell and human dermal microvascular endothelial cell controls, and the BMECs maintained barrier function for up to 21 days. Analysis of cell-cell junctions revealed expression patterns supporting barrier formation. Finally, efflux transporter activity was maintained over 3 weeks of perfused culture. Taken together, this work lays the foundation for development of a representative 3D in vitro model of the human NVU constructed from iPSCs.


Asunto(s)
Barrera Hematoencefálica/efectos de los fármacos , Encéfalo/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Endotelio/efectos de los fármacos , Hidrogeles/farmacología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Albúminas/metabolismo , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Células Cultivadas , Dextranos/metabolismo , Células Endoteliales/metabolismo , Endotelio/metabolismo , Fluoresceína/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Microvasos/efectos de los fármacos , Microvasos/metabolismo
3.
Biomater Sci ; 7(4): 1358-1371, 2019 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-30778445

RESUMEN

The process of cell differentiation in a developing embryo is influenced by numerous factors, including various biological molecules whose presentation varies dramatically over space and time. These morphogens regulate cell fate based on concentration profiles, thus creating discrete populations of cells and ultimately generating large, complex tissues and organs. Recently, several in vitro platforms have attempted to recapitulate the complex presentation of extrinsic signals found in nature. However, it has been a challenge to design versatile platforms that can dynamically control morphogen gradients over extended periods of time. To address some of these issues, we introduce a platform using channels patterned in hydrogels to deliver multiple morphogens to cells in a 3D scaffold, thus creating a spectrum of cell phenotypes based on the resultant morphogen gradients. The diffusion coefficient of a common small molecule morphogen, retinoic acid (RA), was measured within our hydrogel platform using Raman spectroscopy and its diffusion in our platform's geometry was modeled using finite element analysis. The predictive model of spatial gradients was validated in a cell-free hydrogel, and temporal control of morphogen gradients was then demonstrated using a reporter cell line that expresses green fluorescent protein in the presence of RA. Finally, the utility of this approach for regulating cell phenotype was demonstrated by generating opposing morphogen gradients to create a spectrum of mesenchymal stem cell differentiation states.


Asunto(s)
Técnicas Analíticas Microfluídicas , Modelos Biológicos , Morfogénesis , Células Madre/citología , Diferenciación Celular , Células Cultivadas , Humanos
4.
SLAS Technol ; 23(6): 592-598, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29787331

RESUMEN

The fabrication of engineered vascularized tissues and organs requiring sustained, controlled perfusion has been facilitated by the development of several pump systems. Currently, researchers in the field of tissue engineering require the use of pump systems that are in general large, expensive, and generically designed. Overall, these pumps often fail to meet the unique demands of perfusing clinically useful tissue constructs. Here, we describe a pumping platform that overcomes these limitations and enables scalable perfusion of large, three-dimensional hydrogels. We demonstrate the ability to perfuse multiple separate channels inside hydrogel slabs using a preprogrammed schedule that dictates pumping speed and time. The use of this pump system to perfuse channels in large-scale engineered tissue scaffolds sustained cell viability over several weeks.


Asunto(s)
Hidrogeles , Perfusión/métodos , Técnicas de Cultivo de Tejidos/métodos , Ingeniería de Tejidos/métodos , Costos y Análisis de Costo , Perfusión/economía , Perfusión/instrumentación , Técnicas de Cultivo de Tejidos/economía , Técnicas de Cultivo de Tejidos/instrumentación , Ingeniería de Tejidos/economía , Ingeniería de Tejidos/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...