Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Hum Mol Genet ; 33(9): 752-767, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38271183

RESUMEN

Mutations in the Kunitz-type serine protease inhibitor HAI-2, encoded by SPINT2, are responsible for the pathogenesis of syndromic congenital sodium diarrhea (SCSD), an intractable secretory diarrhea of infancy. Some of the mutations cause defects in the functionally required Kunitz domain 1 and/or subcellular targeting signals. Almost all SCSD patients, however, harbor SPINT2 missense mutations that affect the functionally less important Kunitz domain 2. How theses single amino acid substitutions inactivate HAI-2 was, here, investigated by the doxycycline-inducible expression of three of these mutants in HAI-2-knockout Caco-2 human colorectal adenocarcinoma cells. Examining protein expressed from these HAI-2 mutants reveals that roughly 50% of the protein is synthesized as disulfide-linked oligomers that lose protease inhibitory activity due to the distortion of the Kunitz domains by disarrayed disulfide bonding. Although the remaining protein is synthesized as monomers, its glycosylation status suggests that the HAI-2 monomer remains in the immature, lightly glycosylated form, and is not converted to the heavily glycosylated mature form. Heavily glycosylated HAI-2 possesses full anti-protease activity and appropriate subcellular targeting signals, including the one embedded in the complex-type N-glycan. As predicted, these HAI-2 mutants cannot suppress the excessive prostasin proteolysis caused by HAI-2 deletion. The oligomerization and glycosylation defects have also been observed in a colorectal adenocarcinoma line that harbors one of these SPINT2 missense mutations. Our study reveals that the abnormal protein folding and N-glycosylation can cause widespread HAI-2 inactivation in SCSD patents.


Asunto(s)
Adenocarcinoma , Neoplasias Colorrectales , Serina Endopeptidasas , Humanos , Glicoproteínas de Membrana/metabolismo , Células CACO-2 , Glicosilación , Mutación , Diarrea/congénito , Pliegue de Proteína , Neoplasias Colorrectales/genética , Disulfuros , Proteínas Inhibidoras de Proteinasas Secretoras/genética
2.
Hum Cell ; 36(4): 1403-1415, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37076641

RESUMEN

Formation and maintenance of skin barrier function require tightly controlled membrane-associated proteolysis, in which the integral membrane Kunitz-type serine protease inhibitor, HAI-1, functions as the primary inhibitor of the membrane-associated serine proteases, matriptase and prostasin. Previously, HAI-1 loss in HaCaT human keratinocytes resulted in an expected increase in prostasin proteolysis but a paradoxical decrease in matriptase proteolysis. The paradoxical decrease in shed active matriptase is further investigated in this study with an unexpected discovery of novel functions of fibroblast growth factor-binding protein 1 (FGFBP1), which acts as an extracellular ligand that can rapidly elicit F-actin rearrangement and subsequently affect the morphology of human keratinocytes. This novel growth factor-like function is in stark contrast to the canonical activity of this protein through interactions with FGFs for its pathophysiological functions. This discovery began with the observation that HAI-1 KO HaCaT cells lose the characteristic cobblestone morphology of the parental cells and exhibit aberrant F-actin formation along with altered subcellular targeting of matriptase and HAI-2. The alterations in cell morphology and F-actin status caused by targeted HAI-1 deletion can be restored by treatment with conditioned medium from parental HaCaT cells, in which FGFBP1 was identified by tandem mass spectrometry. Recombinant FGFBP1 down to 1 ng/ml was able to revert the changes caused by HAI-1 loss. Our study reveals a novel function of FGFBP1 in the maintenance of keratinocyte morphology, which depends on HAI-1.


Asunto(s)
Actinas , Glicoproteínas de Membrana , Humanos , Actinas/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Queratinocitos/metabolismo , Proteolisis , Proteínas Inhibidoras de Proteinasas Secretoras/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo
3.
Glycobiology ; 33(3): 203-214, 2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-36637420

RESUMEN

Hepatocyte growth factor activator inhibitor (HAI)-2 is an integral membrane Kunitz-type serine protease inhibitor that regulates the proteolysis of matriptase and prostasin in a cell-type selective manner. The cell-type selective nature of HAI-2 function depends largely on whether the inhibitor and potential target enzymes are targeted to locations in close proximity. The N-glycan moiety of HAI-2 can function as a subcellular targeting signal. HAI-2 is synthesized with 1 of 2 different N-glycan modifications: one of oligomannose-type, which largely remains in the endoplasmic reticulum/GA, and another of complex-type, which is targeted toward the apical surface in vesicle-like structures, and could function as an inhibitor of matriptase and prostasin. HAI-2 contains 2 putative N-glycosylation sites, Asn-57 and Asn-94, point mutations of which were generated and characterized in this study. The protein expression profile of the HAI-2 mutants indicates that Asn-57, and not Asn-94, is responsible for the N-glycosylation of both HAI-2 species, suggesting that the form with oligomannose-type N-glycan is the precursor of the form with complex-type N-glycan. Unexpectedly, the vast majority of non-glycosylated HAI-2 is synthesized into multiple disulfide-linked oligomers, which lack protease inhibitory function, likely due to distorted conformations caused by the disarrayed disulfide linkages. Although forced expression of HAI-2 in HAI-2 knockout cells artificially enhances HAI-2 oligomerization, disulfide-linked HAI-2 oligomers can also be observed in unmodified cells. These results suggest that N-glycosylation on Asn-57 is required for folding into a functional HAI-2 with full protease suppressive activity and correct subcellular targeting signal.


Asunto(s)
Retículo Endoplásmico , Glicoproteínas de Membrana , Glicoproteínas de Membrana/química , Proteolisis , Glicosilación , Retículo Endoplásmico/metabolismo , Polisacáridos/metabolismo
4.
Medicine (Baltimore) ; 102(3): e32746, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36701726

RESUMEN

There are few stem cells in human peripheral blood (PB). Increasing the population and plasticity of stem cells in PB and applying it to regenerative medicine require suitable culture methods. In this study, leukocyte populations 250 mL of PB were collected using a blood separator before that were cultured in optimal cell culture medium for 4 to 7 days. After culturing, stemness characteristics were analyzed, and red blood cells were removed from the cultured cells. In our results, stemness markers of the leukocyte populations Sca-1+ CD45+, CD117+ CD45+, and very small embryonic-like stem cells CD34+ Lin- CD45- and CXCR4+ Lin- CD45- were significantly increased. Furthermore, the expression of stem cell genes OCT4 (POU5F1), NANOG, SOX2, and the self-renewal gene TERT was analyzed by quantitative real-time polymerase chain reaction in these cells, and it showed a significant increase. These cells could be candidates for multi-potential cells and were further induced using trans-differentiation culture methods. These cells showed multiple differentiation potentials for osteocytes, nerve cells, cardiomyocytes, and hepatocytes. These results indicate that appropriate culture methods can be applied to increase expression of pluripotent genes and plasticity. Leukocytes of human PB can be induced to trans-differentiate into pluripotent potential cells, which will be an important breakthrough in regenerative medicine.


Asunto(s)
Células Madre Embrionarias , Telomerasa , Humanos , Células Madre Embrionarias/metabolismo , Diferenciación Celular , Genes Homeobox , Antígenos CD34/metabolismo , Células Cultivadas , Leucocitos/metabolismo , Telomerasa/genética , Proteína Homeótica Nanog/genética , Proteína Homeótica Nanog/metabolismo , Factores de Transcripción SOXB1/genética
5.
Drug Deliv ; 30(1): 1-13, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36579479

RESUMEN

Over the past 50 years, 5-fluorouracil (5-FU) has played a critical role in the systemic chemotherapy of cancer patients. Bolus intravenous (IV) 5-FU infusion has been used due to the limitation of its extremely short half-life (10-15 min). This study used ultrasound (US) mediating 5-FU-loaded microbubbles (MBs) cavitation as a tool to increase local intratumoral 5-FU levels with a reduced dose of 5-FU (a single IV injection of 2.5 mg/kg instead of a single intraperitoneal injection of 25-200 mg/kg as used in previous studies in mice). The 5-FU-MBs were prepared with a 132 mg/mL albumin solution and a 0.30 mg/mL 5-FU solution. The diameters of the MBs and 5-FU-MBs were 1.24 ± 0.85 and 2.00 ± 0.53 µm (mean ± SEM), respectively, and the maximum loading efficiency of 5-FU on MBs was 19.04 ± 0.25%. In the in vitro study, the cell viabilities of 5-FU and 5-FU-MBs did not differ significantly, but compared with the 5-FU-MBs treatment-alone group, cell toxicity increased to 31% in the 5-FU-MBs + US group (p < 0.001). The biodistribution results indicated that the 5-FU levels of the tumors in small animals were significant higher for the 5-FU-MBs + US treatment than for either the 5-FU-MBs or 5-FU treatment with low 5-FU systemic treatment doses (2.5 mg/kg 5-FU IV). In small-animal treatment, 2.5 mg/kg 5-FU therapeutic IV doses injected into mice caused a more-significant reduction in tumor growth in the 5-FU-MBs + US group (65.9%) than in the control group after 34 days of treatment.


Asunto(s)
Fluorouracilo , Neoplasias de Cabeza y Cuello , Ratones , Animales , Fluorouracilo/farmacología , Microburbujas , Distribución Tisular , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Resultado del Tratamiento
6.
J Control Release ; 349: 388-400, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35787912

RESUMEN

We have previously reported that ultrasound (US)-mediated microbubble (MB) cavitation (US-MB) changed the permeability of the skin and significantly enhanced transdermal drug delivery (TDD) without changing the structure of the skin. In this study we found that US-MB enhanced TDD via disruption of epidermal cell-cell junctions and increased matriptase activity. Matriptase is a membrane-bound serine protease regulated by its inhibitor hepatocyte growth factor activator inhibitor-1 (HAI-1), and it is expressed in most epithelial tissues under physiologic conditions. Matriptase is expressed in mice after chronic exposure to UV radiation. This study found that US-MB can be used to monitor active matriptase, which rapidly formed the canonical 120-kDa matriptase-HAI-1 complex. These processes were observed in HaCaT human keratinocytes when matriptase activation was induced by US-MB. The results of immunoblot analysis indicated that the matriptase-HAI-1 complex can be detected from 10 min to 3 h after US-MB. Immunohistochemistry (IHC) of human skin revealed that US-MB rapidly increased the activated matriptase, which was observed in the basal layer, with this elevation lasting 3 h. After 3 h, the activated matriptase extended from the basal layer to the granular layer, and then gradually decayed from 6 to 12 h. Moreover, prostasin expression was observed in the epidermal granular layer to the spinous layer, and became more obvious in the granular layer after 3 h. Prostasin was also detected in the cytoplasm or on the cell membrane after 6 h. These results suggest that matriptase plays an important role in recovering from US-MB-induced epidermal cell-cell junction disruption within 6 h. US-MB is therefore a potentially effective method for noninvasive TDD in humans.


Asunto(s)
Microburbujas , Piel , Animales , Epidermis/metabolismo , Humanos , Queratinocitos/metabolismo , Ratones , Permeabilidad , Piel/metabolismo
7.
Genes Dis ; 9(4): 1049-1061, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35685459

RESUMEN

The integral membrane, Kunitz-type serine protease inhibitors HAI-1 and HAI-2, can suppress the proteolytic activity of the type 2 transmembrane serine protease matriptase with high specificity and potency. High levels of extracellular matriptase proteolytic activity have, however, been observed in some neoplastic B-cells with high levels of endogenous HAI-2, indicating that HAI-2 may be an ineffective matriptase inhibitor at the cellular level. The different effectiveness of the HAIs in the control of extracellular matriptase proteolytic activity is examined here. Upon inducing matriptase zymogen activation in the HAI Teton Daudi Burkitt lymphoma cells, which naturally express matriptase with very low levels of HAI-2 and no HAI-1, nascent active matriptase was rapidly inhibited or shed as an enzymatically active enzyme. With increasing HAI-1 expression, cellular matriptase-HAI-1 complex increased, and extracellular active matriptase decreased proportionally. Increasing HAI-2 expression, however, resulted in cellular matriptase-HAI-2 complex levels reaching a plateau, while extracellular active matriptase remained high. In contrast to this differential effect, both HAI-1 and HAI-2, even at very low levels, were shown to promote the expression and cell-surface translocation of endogenous matriptase. The difference in the suppression of extracellular active matriptase by the two closely related serine protease inhibitors could result from the primarily cell surface expression of HAI-1 compared to the mainly intracellular localization of HAI-2. The HAIs, therefore, resemble one another with respect to promoting matriptase expression and surface translocation but differ in their effectiveness in the control of extracellular matriptase enzymatic activity.

8.
Biosensors (Basel) ; 12(5)2022 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-35624605

RESUMEN

Andrographolide is an active diterpenoid compound extracted from Andrographis paniculata. It exhibits antiinflammatory and anticancer effects. Previous studies show that it is non-toxic to experimental animals. The leading causes of cancer are chronic inflammation and high blood glucose. This study determines the cytotoxic effect of andrographolide on cellular morphology, viability, and migration for human oral epidermoid carcinoma cell Meng-1 (OEC-M1). We use electric cell-substrate impedance sensing (ECIS) to measure the subsequent overall impedance changes of the cell monolayer in response to different concentrations of andrographolide for 24 h (10-100 µM). The results for exposure of OEC-M1 cells to andrographolide (10-100 µM) for 24 h show a concentration-dependent decrease in the overall measured resistance at 4 kHz. AlamarBlue cell viability assay and annexin V also show the apoptotic effect of andrographolide on OEC-M1 cells. A reduction in wound-healing recovery rate is observed for cells treated with 30 µM andrographolide. This study demonstrates that ECIS can be used for the in vitro screening of anticancer drugs. ECIS detects the cytotoxic effect of drugs earlier than traditional biochemical assays, and it is more sensitive and shows more detail.


Asunto(s)
Antineoplásicos , Carcinoma de Células Escamosas , Diterpenos , Animales , Antineoplásicos/farmacología , Carcinoma de Células Escamosas/tratamiento farmacológico , Supervivencia Celular , Diterpenos/química , Diterpenos/farmacología , Humanos
9.
Hum Cell ; 35(1): 163-178, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34643933

RESUMEN

The integral membrane, Kunitz-type, serine protease inhibitors, HAI-1 and HAI-2, closely resemble one another structurally and with regard to their specificity and potency against proteases. Structural complementarity between the Kunitz domains and serine protease domains renders the membrane-associated serine proteases, matriptase and prostasin, the primary target proteases of the HAIs. The shared biochemical enzyme-inhibitor relationships are, however, at odds with their behavior at the cellular level, where HAI-1 appears to be the default inhibitor of these proteases and HAI-2 a cell-type-selective inhibitor, even though they are widely co-expressed. The limited motility of these proteins caused by their membrane anchorages may require their co-localization within a certain distance to allow the establishment of a cellular level functional relationship between the proteases and the inhibitors. The differences in their subcellular localization with HAI-1 both inside the cell and on the cell surface, compared to HAI-2 predominately in intracellular granules has, therefore, been implicated in the differential manner of their control of matriptase and prostasin proteolysis. The targeting signals present in the intracellular domains of the HAIs are systematically investigated herein. Studies involving domain swap and point mutation, in combination with immunocytochemistry and cell surface biotinylation/avidin depletion, reveal that the different subcellular localization between the HAIs can largely be attributed to differences in the intracellular Arg/Lys-rich and EHLVY motifs. These intrinsic differences in the targeting signal render the HAIs as two independent rather than redundant proteolysis regulators.


Asunto(s)
Secuencias de Aminoácidos , Arginina/metabolismo , Membrana Celular/metabolismo , Espacio Intracelular/metabolismo , Lisina/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas Inhibidoras de Proteinasas Secretoras/metabolismo , Avidina/metabolismo , Biotinilación , Células Cultivadas , Gránulos Citoplasmáticos/metabolismo , Humanos , Dominios Proteicos , Proteolisis , Serina Endopeptidasas/metabolismo
10.
Hum Mol Genet ; 30(19): 1833-1850, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34089062

RESUMEN

Mutations of SPINT2, the gene encoding the integral membrane, Kunitz-type serine inhibitor HAI-2, primarily affect the intestine, while sparing many other HAI-2-expressing tissues, causing sodium loss in patients with syndromic congenital sodium diarrhea. The membrane-bound serine protease prostasin was previously identified as a HAI-2 target protease in intestinal tissues but not in the skin. In both tissues, the highly related inhibitor HAI-1 is, however, the default inhibitor for prostasin and the type 2 transmembrane serine protease matriptase. This cell-type selective functional linkage may contribute to the organ-selective damage associated with SPINT 2 mutations. To this end, the impact of HAI-2 deletion on matriptase and prostasin proteolysis was, here, compared using Caco-2 human colorectal adenocarcinoma cells and HaCaT human keratinocytes. Greatly enhanced prostasin proteolytic activity with a prolonged half-life and significant depletion of HAI-1 monomer were observed with HAI-2 loss in Caco-2 cells but not HaCaT cells. The constitutive, high level prostasin zymogen activation observed in Caco-2 cells, but not in HaCaT cells, also contributes to the excessive prostasin proteolytic activity caused by HAI-2 loss. HAI-2 deletion also caused increased matriptase zymogen activation, likely as an indirect result of increased prostasin proteolysis. This increase in activated matriptase, however, only had a negligible role in depletion of HAI-1 monomer. Our study suggests that the constitutive, high level of prostasin zymogen activation and the cell-type selective functional relationship between HAI-2 and prostasin renders Caco-2 cells more susceptible than HaCaT cells to the loss of HAI-2, causing a severe imbalance favoring prostasin proteolysis.


Asunto(s)
Células Epiteliales , Glicoproteínas de Membrana , Células CACO-2 , Células Epiteliales/metabolismo , Humanos , Intestinos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas Inhibidoras de Proteinasas Secretoras/genética , Proteínas Inhibidoras de Proteinasas Secretoras/metabolismo , Proteolisis , Serina Endopeptidasas
11.
Hum Cell ; 34(3): 771-784, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33486722

RESUMEN

Epidermal differentiation and barrier function require well-controlled matriptase and prostasin proteolysis, in which the Kunitz-type serine protease inhibitor HAI-1 represents the primary enzymatic inhibitor for both proteases. HAI-1, however, also functions as a chaperone-like protein necessary for normal matriptase synthesis and intracellular trafficking. Furthermore, other protease inhibitors, such as antithrombin and HAI-2, can also inhibit matriptase and prostasin in solution or in keratinocytes. It remains unclear, therefore, whether aberrant increases in matriptase and prostasin enzymatic activity would be the consequence of targeted deletion of HAI-1 and so subsequently contribute to the epidermal defects observed in HAI-1 knockout mice. The impact of HAI-1 deficiency on matriptase and prostasin proteolysis was, here, investigated in HaCaT human keratinocytes. Our results show that HAI-1 deficiency causes an increase in prostasin proteolysis via increased protein expression and zymogen activation. It remains unclear, however, whether HAI-1 deficiency increases "net" prostasin enzymatic activity because all of the activated prostasin was detected in complexes with HAI-2, suggesting that prostasin enzymatic activity is still under tight control in HAI-1-deficient keratinocytes. Matriptase proteolysis is, however, unexpectedly suppressed by HAI-1 deficiency, as manifested by decreases in zymogen activation, shedding of active matriptase, and matriptase-dependent prostasin zymogen activation. This suppressed proteolysis results mainly from the reduced ability of HAI-1-deficient HaCaT cells to activate matriptase and the rapid inhibition of nascent active matriptase by HAI-2 and other yet-to-be-identified protease inhibitors. Our study provides novel insights with opposite impacts by HAI-1 deficiency on matriptase versus prostasin proteolysis in keratinocytes.


Asunto(s)
Eliminación de Gen , Queratinocitos/metabolismo , Proteínas Inhibidoras de Proteinasas Secretoras/genética , Proteínas Inhibidoras de Proteinasas Secretoras/fisiología , Proteolisis , Serina Endopeptidasas/metabolismo , Piel/citología , Piel/metabolismo , Células HaCaT , Humanos , Proteínas Inhibidoras de Proteinasas Secretoras/deficiencia
12.
Hum Cell ; 33(4): 1068-1080, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32779152

RESUMEN

The pathophysiological functions of matriptase, a type 2 transmembrane serine protease, rely primarily on its enzymatic activity, which is under tight control through multiple mechanisms. Among those regulatory mechanisms, the control of zymogen activation is arguably the most important. Matriptase zymogen activation not only generates the mature active enzyme but also initiates suppressive mechanisms, such as rapid inhibition by HAI-1, and matriptase shedding. These tightly coupled events allow the potent matriptase tryptic activity to fulfill its biological functions at the same time as limiting undesired hazards. Matriptase is converted to the active enzyme via a process of autoactivation, in which the activational cleavage is thought to rely on the interactions of matriptase zymogen molecules and other as yet identified proteins. Matriptase autoactivation can occur spontaneously and is rapidly followed by the formation and then shedding of matriptase-HAI-1 complexes, resulting in the presence of relatively low levels of the complex on cells. Activation can also be induced by several non-protease factors, such as the exposure of cells to a mildly acidic buffer, which rapidly causes high-level matriptase zymogen activation in almost all cell lines tested. In the current study, the structural requirements for this acid-induced zymogen activation are compared with those required for spontaneous activation through a systematic analysis of the impact of 18 different mutations in various structural domains and motifs on matriptase zymogen activation. Our study reveals that both acid-induced matriptase activation and spontaneous activation depend on the maintenance of the structural integrity of the serine protease domain, non-catalytic domains, and posttranslational modifications. The common requirements of both modes of activation suggest that acid-induced matriptase activation may function as a physiological mechanism to induce pericellular proteolysis by accelerating matriptase autoactivation.


Asunto(s)
Ácidos/farmacología , Activación Enzimática , Precursores Enzimáticos/metabolismo , Serina Endopeptidasas/metabolismo , Precursores Enzimáticos/química , Precursores Enzimáticos/genética , Humanos , Mutación , Dominios Proteicos/genética , Procesamiento Proteico-Postraduccional/genética , Proteínas Inhibidoras de Proteinasas Secretoras/farmacología , Serina Endopeptidasas/química , Serina Endopeptidasas/genética , Células Tumorales Cultivadas
13.
Hum Cell ; 33(4): 990-1005, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32617892

RESUMEN

Orchestrated control of multiple overlapping and sequential processes is required for the maintenance of epidermal homeostasis and the response to and recovery from a variety of skin insults. Previous studies indicate that membrane-associated serine protease matriptase and prostasin play essential roles in epidermal development, differentiation, and barrier formation. The control of proteolysis is a highly regulated process, which depends not only on gene expression but also on zymogen activation and the balance between protease and protease inhibitor. Subcellular localization can affect the accessibility of protease inhibitors to proteases and, thus, also represents an integral component of the control of proteolysis. To understand how membrane-associated proteolysis is regulated in human skin, these key aspects of matriptase and prostasin were determined in normal and injured human skin by immunohistochemistry. This staining shows that matriptase is expressed predominantly in the zymogen form at the periphery of basal and spinous keratinocytes, and prostasin appears to be constitutively activated at high levels in polarized organelle-like structures of the granular keratinocytes in the adjacent quiescent skin. The membrane-associated proteolysis appears to be elevated via an increase in matriptase zymogen activation and prostasin protein expression in areas of skin recovering from epidermal insults. There was no noticeable change observed in other regulatory aspects, including the expression and tissue distribution of their cognate inhibitors HAI-1 and HAI-2. This study reveals that the membrane-associated proteolysis may be a critical epidermal mechanism involved in responding to, and recovering from, damage to human skin.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Expresión Génica , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Fenómenos Fisiológicos de la Piel/genética , Piel/lesiones , Cicatrización de Heridas/genética , Cicatrización de Heridas/fisiología , Heridas y Lesiones/genética , Heridas y Lesiones/metabolismo , Células Cultivadas , Precursores Enzimáticos/genética , Precursores Enzimáticos/metabolismo , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas Inhibidoras de Proteinasas Secretoras/genética , Proteínas Inhibidoras de Proteinasas Secretoras/metabolismo , Proteolisis , Serina Endopeptidasas/fisiología , Piel/metabolismo
14.
Sci Rep ; 10(1): 11837, 2020 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-32678267

RESUMEN

The zinc-finger protein which regulates apoptosis and cell cycle arrest 1 (Zac1), encoded by Plagl1 gene, is a seven-zinc-finger containing transcription factor belonging to the imprinted genome and is expressed in diverse types of embryonic and adult human tissues. Zac1 is postulated to be a tumor suppressor by inducing cell cycle arrest and apoptosis through interacting and modulating transcriptional activity of p53 as it was named. Correspondingly, the reduction or loss of Zac1 expression is associated with the incidence and progression of several human tumors, including cervical cancer, breast cancer, ovarian cancer, pituitary tumors, and basal cell carcinoma, implying the rationality of utilizing Zac1 expression as novel a biomarker for the evaluation of cervical cancer prognosis. However, to date, it has not been elucidated whether Zac1 expression is related to the prognosis of patients in clinical cervical cancer tumor samples. To address the questions outlined above, we report here a comprehensive investigation of Zac1 expression in biopsies of clinical cervical carcinoma. By analyzing Zac1 expression in various gene expression profiling of cervical cancer databases, we show the association between high Zac1 expression and poor prognosis of cervical cancer. Functional enrichment analysis showed that high Zac1 expression was associated with epithelial-mesenchymal transition (EMT), which was further observed in clinical characteristics and metastatic carcinoma samples using immunohistochemical staining. Correspondingly, hypomethylation of CpG island on Zac1 promoter was observed in samples with high Zac1 expression in cervical carcinoma. Finally, overexpression of Zac1 in a variety of cervical cancer cell lines increase their mesenchymal biomarker expression and migration, strengthening the correlation between cervical cancers with high Zac1 expression and metastasis in clinical. In summary, this research firstly revealed that identifying Zac1 expression or the methylation status of CpG site on Zac1 promoter may provide us with novel indicators for the evaluation of cervical cancer metastasis.


Asunto(s)
Carcinoma/genética , Proteínas de Ciclo Celular/genética , Regulación Neoplásica de la Expresión Génica , Proteínas de Neoplasias/genética , Regiones Promotoras Genéticas , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/genética , Neoplasias del Cuello Uterino/genética , Adulto , Carcinoma/diagnóstico , Carcinoma/mortalidad , Carcinoma/patología , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Islas de CpG , Metilación de ADN , Bases de Datos Factuales , Transición Epitelial-Mesenquimal/genética , Femenino , Perfilación de la Expresión Génica , Células HeLa , Humanos , Metástasis Linfática , Persona de Mediana Edad , Proteínas de Neoplasias/metabolismo , Estadificación de Neoplasias , Pronóstico , Análisis de Supervivencia , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Neoplasias del Cuello Uterino/diagnóstico , Neoplasias del Cuello Uterino/mortalidad , Neoplasias del Cuello Uterino/patología
15.
Hum Cell ; 33(3): 459-469, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32306195

RESUMEN

Studies of human genetic disorders and animal models indicate that matriptase plays essential roles in proteolytic processes associated with profilaggrin processing and desquamation at late stages of epidermal differentiation. The tissue distribution profile and zymogen activation status in human skin, however, suggests that matriptase physiological function in the skin more likely lies in the proliferating and differentiating keratinocytes in the basal and spinous layers. Marked acanthosis with expanded spinous layer and lack of significant changes in intensity and expression pattern for several terminal differentiation markers in the skin of ARIH patients support matriptase's role in earlier rather than the later stages of differentiation. In addition to the tissue distribution, differential subcellular localization further limits the ability of extracellular matriptase proteolytic activity to access the cytosolic non-membrane-bound keratohyalin granules, in which profilaggrin processing occurs. The short lifespan of active matriptase, which results from tightly controlled zymogen activation, rapid inhibition by HAI-1, and shedding from cell surface, indicates that active matriptase likely performs physiological functions via limited proteolysis on its substrates, as needed, rather than via a continuous bulk process. We, here, review these spatiotemporal controls of matriptase proteolytic activity at the biochemical, cellular, and tissue level. Based on this in-depth understanding of how matriptase activity is regulated, we argue that there is no direct involvement of matriptase proteolytic activity in profilaggrin processing and desquamation. The defects in epidermal terminal differentiation associated with matriptase deficiency are likely secondary and are due to putative disruption at earlier stages of differentiation.


Asunto(s)
Proteínas de Filamentos Intermediarios/metabolismo , Proteolisis , Serina Endopeptidasas/fisiología , Animales , Diferenciación Celular , Proliferación Celular , Precursores Enzimáticos/metabolismo , Células Epidérmicas/fisiología , Proteínas Filagrina , Humanos , Queratinocitos/fisiología , Ratones , Mutación , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo
16.
PLoS One ; 15(2): e0228874, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32049977

RESUMEN

Matriptase plays important roles in epithelial integrity and function, which depend on its sorting to the basolateral surface of cells, where matriptase zymogen is converted to an active enzyme in order to act on its substrates. After activation, matriptase undergoes HAI-1-mediated inhibition, internalization, transcytosis, and secretion from the apical surface into the lumen. Matriptase is a mosaic protein with several distinct protein domains and motifs, which are a reflection of matriptase's complex cellular itinerary, life cycle, and the tight control of its enzymatic activity. While the molecular determinants for various matriptase regulatory events have been identified, the motif(s) required for translocation of human matriptase to the basolateral plasma membrane is unknown. The motif previously identified in rat matriptase is not conserved between the rodent and the primate. We, here, revisit the question for human matriptase through the use of a fusion protein containing a green fluorescent protein linked to the matriptase N-terminal fragment ending at Gly-149. A conserved seven amino acid motif EEGEVFL, which is similar to the monoleucine C-terminal to an acidic cluster motif involved in the basolateral targeting for some growth factors, has been shown to be required for matriptase translocation to the basolateral plasma membrane of polarized MDCK cells. Furthermore, time-lapse video microscopy showed that the motif appears to be required for entry into the correct transport vesicles, by which matriptase can undergo rapid trafficking and translocate to the plasma membrane. Our study reveals that the EEGEVFL motif is necessary, but may not be sufficient, for matriptase basolateral membrane targeting and serves as the basis for further research on its pathophysiological roles.


Asunto(s)
Secuencias de Aminoácidos/fisiología , Membrana Celular/metabolismo , Transporte de Proteínas/fisiología , Serina Endopeptidasas/metabolismo , Animales , Línea Celular , Estructuras de la Membrana Celular/metabolismo , Polaridad Celular/fisiología , Citoplasma/metabolismo , Perros , Precursores Enzimáticos/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Células de Riñón Canino Madin Darby , Glicoproteínas de Membrana/metabolismo , Proteínas Inhibidoras de Proteinasas Secretoras/metabolismo
17.
J Enzyme Inhib Med Chem ; 34(1): 692-702, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30777474

RESUMEN

Matriptase is ectopically expressed in neoplastic B-cells, in which matriptase activity is enhanced by negligible expression of its endogenous inhibitor, hepatocyte growth factor activator inhibitor (HAI)-1. HAI-1, however, is also involved in matriptase synthesis and intracellular trafficking. The lack of HAI-1 indicates that other related inhibitor, such as HAI-2, might be expressed. Here, we show that HAI-2 is commonly co-expressed in matriptase-expressing neoplastic B-cells. The level of active matriptase shed after induction of matriptase zymogen activation in 7 different neoplastic B-cells was next determined and characterised. Our data reveal that active matriptase can only be generated and shed by those cells able to activate matriptase and in a rough correlation with the levels of matriptase protein. While HAI-2 can potently inhibit matriptase, the levels of active matriptase are not proportionally suppressed in those cells with high HAI-2. Our survey suggests that matriptase proteolysis might aberrantly remain high in neoplastic B-cells regardless of the levels of HAI-2.


Asunto(s)
Linfocitos B/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Glicoproteínas de Membrana/biosíntesis , Proteolisis/efectos de los fármacos , Serina Endopeptidasas/metabolismo , Linfocitos B/metabolismo , Línea Celular Tumoral , Humanos , Glicoproteínas de Membrana/metabolismo , Serina Endopeptidasas/biosíntesis
19.
PLoS One ; 13(2): e0192632, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29438412

RESUMEN

The membrane-bound serine proteases prostasin and matriptase and the Kunitz-type protease inhibitors HAI-1 and HAI-2 are all expressed in human skin and may form a tightly regulated proteolysis network, contributing to skin pathophysiology. Evidence from other systems, however, suggests that the relationship between matriptase and prostasin and between the proteases and the inhibitors can be context-dependent. In this study the in vivo zymogen activation and protease inhibition status of matriptase and prostasin were investigated in the human skin. Immunohistochemistry detected high levels of activated prostasin in the granular layer, but only low levels of activated matriptase restricted to the basal layer. Immunoblot analysis of foreskin lysates confirmed this in vivo zymogen activation status and further revealed that HAI-1 but not HAI-2 is the prominent inhibitor for prostasin and matriptase in skin. The zymogen activation status and location of the proteases does not support a close functional relation between matriptase and prostasin in the human skin. The limited role for HAI-2 in the inhibition of matriptase and prostasin is the result of its primarily intracellular localization in basal and spinous layer keratinocytes, which probably prevents the Kunitz inhibitor from interacting with active prostasin or matriptase. In contrast, the cell surface expression of HAI-1 in all viable epidermal layers renders it an effective regulator for matriptase and prostasin. Collectively, our study suggests the importance of tissue distribution and subcellular localization in the functional relationship between proteases and protease inhibitors.


Asunto(s)
Glicoproteínas de Membrana/metabolismo , Proteínas Inhibidoras de Proteinasas Secretoras/metabolismo , Serina Endopeptidasas/metabolismo , Piel/metabolismo , Fracciones Subcelulares/metabolismo , Humanos , Distribución Tisular
20.
PLoS One ; 12(8): e0183507, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28829816

RESUMEN

The type 2 transmembrane serine protease matriptase is involved in many pathophysiological processes probably via its enzymatic activity, which depends on the dynamic relationship between zymogen activation and protease inhibition. Matriptase shedding can prolong the life of enzymatically active matriptase and increase accessibility to substrates. We show here that matriptase shedding occurs via a de novo proteolytic cleavage at sites located between the SEA domain and the CUB domain. Point or combined mutations at the four positively charged amino acid residues in the region following the SEA domain allowed Arg-186 to be identified as the primary cleavage site responsible for matriptase shedding. Kinetic studies further demonstrate that matriptase shedding is temporally coupled with matriptase zymogen activation. The onset of matriptase shedding lags one minute behind matriptase zymogen activation. Studies with active site triad Ser-805 point mutated matriptase, which no longer undergoes zymogen activation or shedding, further suggests that matriptase shedding depends on matriptase zymogen activation, and that matriptase proteolytic activity may be involved in its own shedding. Our studies uncover an autonomous mechanism coupling matriptase zymogen activation, proteolytic activity, and shedding such that a proportion of newly generated active matriptase escapes HAI-1-mediated rapid inhibition by shedding into the extracellular milieu.


Asunto(s)
Precursores Enzimáticos/metabolismo , Serina Endopeptidasas/metabolismo , Secuencia de Aminoácidos , Anticuerpos Monoclonales/inmunología , Línea Celular Tumoral , Activación Enzimática , Humanos , Mutación Puntual , Proteolisis , Homología de Secuencia de Aminoácido , Serina Endopeptidasas/química , Serina Endopeptidasas/genética , Serina Endopeptidasas/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...