Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Zhongguo Zhong Yao Za Zhi ; 49(2): 379-388, 2024 Jan.
Artículo en Chino | MEDLINE | ID: mdl-38403314

RESUMEN

Andrographis paniculata is an important medicinal plant in the Lingnan region of China, which has the functions of clearing heat, removing toxins, and resisting bacteria and inflammation. The TCP gene family is a class of transcription factors that regulate plant growth, development, and stress response. In order to analysis the role of the TCP gene family under abiotic stress in A. paniculata, this study identified the TCP gene family of A. paniculata at the genome-wide level and analyzed its expression pattern in response to abiotic stress. The results showed that the A. paniculata TCP gene family had 23 members, with length of amino acid ranging from 136 to 508, the relative molecular mass between 14 854.71 and 55 944.90 kDa, and the isoelectric point between 5.67 and 10.39. All members were located in the nucleus and unevenly distributed on 13 chromosomes. Phylogenetic analysis classified them into three subfamilies: PCF, CIN and CYC/TB1. Gene structure and conserved motif analysis showed that most members of the TCP gene family contained motif 1, motif 2, motif 3 in the same order and 1-3 CDS. The analysis of promoter cis-acting elements showed that the transcriptional expression of the TCP gene family in A. paniculata might be induced by light, hormones, and adversity stress. In light of the expression pattern analysis and qRT-PCR verification, the expression of ApTCP4, ApTCP5, ApTCP6, and ApTCP11 involved in response by various abiotic stresses such as drought, high temperature, and MeJA. This study lays the foundation for in-depth exploration of the functions of A. paniculata TCP genes in response to abiotic stress.


Asunto(s)
Aminoácidos , Andrographis paniculata , Filogenia , China , Sequías , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética
2.
Plants (Basel) ; 12(5)2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36904047

RESUMEN

Photosynthetic efficiency under both steady-state and fluctuating light can significantly affect plant growth under naturally fluctuating light conditions. However, the difference in photosynthetic performance between different rose genotypes is little known. This study compared the photosynthetic performance under steady-state and fluctuating light in two modern rose cultivars (Rose hybrida), "Orange Reeva" and "Gelato", and an old Chinese rose plant Rosa chinensis cultivar, "Slater's crimson China". The light and CO2 response curves indicated that they showed similar photosynthetic capacity under steady state. The light-saturated steady-state photosynthesis in these three rose genotypes was mainly limited by biochemistry (60%) rather than diffusional conductance. Under fluctuating light conditions (alternated between 100 and 1500 µmol photons m-2 m-1 every 5 min), stomatal conductance gradually decreased in these three rose genotypes, while mesophyll conductance (gm) was maintained stable in Orange Reeva and Gelato but decreased by 23% in R. chinensis, resulting in a stronger loss of CO2 assimilation under high-light phases in R. chinensis (25%) than in Orange Reeva and Gelato (13%). As a result, the variation in photosynthetic efficiency under fluctuating light among rose cultivars was tightly related to gm. These results highlight the importance of gm in dynamic photosynthesis and provide new traits for improving photosynthetic efficiency in rose cultivars.

3.
Front Med (Lausanne) ; 9: 1032253, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36438028

RESUMEN

Study objective: To quantitatively assess and compare the efficacy and adverse effects of six different peripheral nerve block techniques after arthroscopic shoulder surgery (ASS). Design: Bayesian network meta-analysis. Methods: The PubMed, Embase, Web of Science, the Cochrane Central Register of Controlled Trials, China National Knowledge Infrastructure database, Chinese Scientific Journal database, Wan Fang databases were searched to retrieve randomized clinical trials comparing interscalene brachial plexus block, continuous interscalene brachial plexus block, supraclavicular brachial plexus block, suprascapular nerve block, combined suprascapular and axillary nerve block and local infiltration analgesia on postoperative pain, opioid consumption, and adverse effects (defined as Horner's syndrome, dyspnea, hoarseness, vomiting, and nausea) after ASS under general anesthesia (GA). Two reviewers independently screened the literature, extracted data, and evaluated the risk of bias in the included studies. Results: A total of 1,348 articles were retrieved initially and 36 randomized clinical trials involving 3,124 patients were included in the final analysis. The network meta-analysis showed that interscalene brachial plexus block was superior in reducing pain and opioid consumption compared to the five other interventions. However, adverse effects were reduced using suprascapular nerve block and combined suprascapular and axillary nerve block compared to interscalene brachial plexus block. Conclusion: Interscalene brachial plexus block was superior in reducing pain and opioid consumption compared to other peripheral nerve blocks but had a higher frequency of adverse events.

4.
Trials ; 23(1): 720, 2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36042484

RESUMEN

BACKGROUND: Postoperative delirium in elderly patients is a common and costly complication after surgery. Propofol and sevoflurane are commonly used anesthetics during general anesthesia, and the sedative and anti-inflammatory mechanisms of the two medications are different. The aim of this trial is to compare the impact of propofol with sevoflurane on the incidence of postoperative delirium in elderly patients after spine surgery. METHODS: A single-center randomized controlled trial will be performed at First Affiliated Hospital of Shandong First Medical University, China. A total of 298 participants will be enrolled in the study and randomized to propofol infusion or sevoflurane inhalation groups. The primary outcome is the incidence of delirium within 7 days after surgery. Secondary outcomes include the day of postoperative delirium onset, duration (time from first to last delirium-positive day), and total delirium-positive days among patients who developed delirium; tracheal intubation time in PACU; the length of stay in PACU; the rate of postoperative shivering; the rate of postoperative nausea and vomiting; the rate of emergence agitation; pain severity; QoR40 at the first day after surgery; the length of stay in hospital after surgery; and the incidence of non-delirium complications within 30 days after surgery. DISCUSSION: The primary objective of this study is to compare the impact of propofol and sevoflurane on the incidence of postoperative delirium for elderly patients undergoing spine surgery. The results may help inform strategies to the optimal selection of maintenance drugs for general anesthesia in elderly patients undergoing spine surgery. TRIAL REGISTRATION: ClinicalTrials.gov NCT05158998 . Registered on 14 December 2021.


Asunto(s)
Anestésicos por Inhalación , Delirio , Propofol , Anciano , Anestésicos por Inhalación/efectos adversos , Delirio/diagnóstico , Delirio/epidemiología , Delirio/etiología , Humanos , Incidencia , Propofol/efectos adversos , Ensayos Clínicos Controlados Aleatorios como Asunto , Sevoflurano/efectos adversos
5.
Gene ; 844: 146826, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-35998843

RESUMEN

2,2',4,4'-tetrabrominated diphenyl ether (BDE-47) is one of the most widely distributed PBDEs. BDE-47 is also the most abundant in organisms and the most toxic to humans and animals. Herein, we have studied the pathway of BDE-47 degradation and gene involvement in Acinetobacter pittii GB-2. This degradation is dominated by hydroxylation, resulting in hydroxylated products 6-OH-BDE-47, 5-OH-BDE-47 and 2'-OH-BDE-28, and bromophenol products 2,4-DBP and 4-BP. Transcriptome sequencing results showed 359 differentially expressed genes (DEGs) induced by BDE-47, of which 159 were up-regulated and 200 were down-regulated. The up-regulated ones were mainly related to substance transport, degradation and cell stress. From these results, we suggest that 1,2-dioxygenase, phenol hydroxylase and monooxygenase are involved in BDE-47 degradation. The function of AntA gene was identified by constructing a prokaryotic expression vector. Our study contributes to understanding how the metabolism of strain GB-2 changes under BDE-47 stress conditions, and sheds light on the mechanism of BDE-47 degradation.


Asunto(s)
Éteres Difenilos Halogenados , Transcriptoma , Acinetobacter , Animales , Éteres Difenilos Halogenados/análisis , Éteres Difenilos Halogenados/metabolismo , Humanos , Hidroxilación , Transcriptoma/genética
6.
Plant Divers ; 44(1): 101-108, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35281120

RESUMEN

Paphiopedilum dianthum and P. micranthum are two endangered orchid species, with high ornamental and conservation values. They are sympatric species, but their leaf anatomical traits and flowering period have significant differences. However, it is unclear whether the differences in leaf structure of the two species will affect their adaptabilities to temperature. Here, we investigated the leaf photosynthetic, anatomical, and flowering traits of these two species at three sites with different temperatures (Kunming, 16.7 ± 0.2 °C; Puer, 17.7 ± 0.2 °C; Menglun, 23.3 ± 0.2 °C) in southwest China. Compared with those at Puer and Kunming, the values of light-saturated photosynthetic rate (Pmax), stomatal conductance (gs), leaf thickness (LT), and stomatal density (SD) in both species were lower at Menglun. The values of Pmax, gs, LT, adaxial cuticle thickness (CTad) and SD in P. dianthum were higher than those of P. micranthum at the three sites. Compared with P. dianthum, there were no flowering plants of P. micranthum at Menglun. These results indicated that both species were less resistance to high temperature, and P. dianthum had a stronger adaptability to high-temperature than P. micranthum. Our findings can provide valuable information for the conservation and cultivation of Paphiopedilum species.

7.
Zhongguo Zhong Yao Za Zhi ; 47(1): 72-84, 2022 Jan.
Artículo en Chino | MEDLINE | ID: mdl-35178913

RESUMEN

The plant growth, development, and secondary metabolism are regulated by R2 R3-MYB transcription factors. This study identified the R2 R3-MYB genes in the genome of Andrographis paniculata and analyzed the chromosomal localization, gene structure, and conserved domains, phylogenetic relationship, and promoter cis-acting elements of these R2 R3-MYB genes. Moreover, the gene expression profiles of R2 R3-MYB genes under abiotic stress and hormone treatments were generated by RNA-seq and validated by qRT-PCR. The results showed that A. paniculata contained 73 R2 R3-MYB genes on 21 chromosomes. These members belonged to 34 subfamilies, 19 of which could be classified into the known subfamilies in Arabidopsis thaliana. The 73 R2 R3-MYB members included 36 acidic proteins and 37 basic proteins, with the lengths of 148-887 aa. The domains, motifs, and gene structures of R2 R3-MYBs in A. paniculata were conserved. The promoter regions of these genes contains a variety of cis-acting elements related to the responses to environmental factors and plant hormones including light, ABA, MeJA, and drought. Based on the similarity of functions of R2 R3-MYBs in the same subfamily and the transcription profiles, ApMYB13/21/35/67/73(S22) may regulate drought stress through ABA pathway; ApMYB20(S11) and ApMYB55(S2) may play a role in the response of A. paniculata to high temperature and UV-C stress; ApMYB5(S7) and ApMYB33(S20) may affect the accumulation of andrographolide by regulating the expression of key enzymes in the MEP pathway. This study provides theoretical reference for further research on the functions of R2 R3-MYB genes in A. paniculata and breeding of A. paniculata varieties with high andrographolide content.


Asunto(s)
Andrographis paniculata , Genes myb , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Filogenia , Proteínas de Plantas/metabolismo
8.
BMJ Open ; 12(1): e053337, 2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-35078841

RESUMEN

INTRODUCTION: The aim of this prospective study is to evaluate the effects of combining topical airway anaesthesia with intravenous induction on haemodynamic variables during the induction period in patients undergoing cardiac surgery. METHODS AND ANALYSIS: This randomised, double-blind, controlled, parallel-group, superiority study from 1 March 2021 to 31 December 2021 will include 96 participants scheduled for cardiac surgery. Participants will be screened into three blocks (ASA II, ASA III, ASA IV) according to the American Society of Anesthesiologists (ASA) grade and then randomly allocated into two groups within the block in a 1:1 ratio. Concealment of allocation will be maintained using opaque, sealed envelopes generated by a nurse according to a computer-generated randomisation schedule. In addition to general intravenous anaesthetics, participants will receive supraglottic and subglottic topical anaesthesia. Changes in arterial blood pressure and heart rate in both groups will be recorded by an independent investigator at the start of anaesthesia induction until the skin incision. If vasopressors are used during this period, the frequency, dosage and types of vasopressors will be recorded. The incidence and severity of participants' postoperative hoarseness and sore throat will also be assessed. ETHICS AND DISSEMINATION: This study was approved by the Ethics Committee of Qianfoshan Hospital of Shandong Province (registration number: YXLL-KY-2021(003)). The results will be disseminated through a peer-reviewed publication and in conferences or congresses. TRIAL REGISTRATION NUMBER: NCT04744480.


Asunto(s)
Anestesia Local , Procedimientos Quirúrgicos Cardíacos , Anestesia General , Método Doble Ciego , Humanos , Estudios Prospectivos , Ensayos Clínicos Controlados Aleatorios como Asunto
9.
BMC Plant Biol ; 21(1): 529, 2021 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-34763662

RESUMEN

BACKGROUND: Natural hybridization can influence the adaptive response to selection and accelerate species diversification. Understanding the composition and structure of hybrid zones may elucidate patterns of hybridization processes that are important to the formation and maintenance of species, especially for taxa that have experienced rapidly adaptive radiation. Here, we used morphological traits, ddRAD-seq and plastid DNA sequence data to investigate the structure of a Rhododendron hybrid zone and uncover the hybridization patterns among three sympatric and closely related species. RESULTS: Our results show that the hybrid zone is complex, where bi-directional hybridization takes place among the three sympatric parental species: R. spinuliferum, R. scabrifolium, and R. spiciferum. Hybrids between R. spinuliferum and R. spiciferum (R. ×duclouxii) comprise multiple hybrid classes and a high proportion of F1 generation hybrids, while a novel hybrid taxon between R. spinuliferum and R. scabrifolium dominated the F2 generation, but no backcross individuals were detected. The hybrid zone showed basically coincident patterns of population structure between genomic and morphological data. CONCLUSIONS: Natural hybridization exists among the three Rhododendron species in the hybrid zone, although patterns of hybrid formation vary between hybrid taxa, which may result in different evolutionary outcomes. This study represents a unique opportunity to dissect the ecological and evolutionary mechanisms associated with adaptive radiation of Rhododendron species in a biodiversity hotspot.


Asunto(s)
Hibridación Genética , Rhododendron/genética , Genoma de Planta , Rhododendron/anatomía & histología , Rhododendron/clasificación
10.
Plant Sci ; 312: 111053, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34620448

RESUMEN

Photosystem I (PSI) is the primary target of photoinhibition under fluctuating light (FL). In angiosperms, cyclic electron flow (CEF) around PSI is thought to be the main player protecting PSI under FL. The activation of CEF is linked to the thylakoid stacking, which is in turn affected by light intensity. However, it is unknown how pre-illumination affects the CEF activation and PSI redox state under FL. To address this question, we conducted a spectroscopic analysis under FL in Bletilla striata and Morus alba after pre-illumination at moderate light (ML, 611 µmol photons m-2 s-1) or high light (HL, 1455 µmol photons m-2 s-1). Our results indicated that both species displayed a transient over-reduction of PSI after a transition from low to high light, but the extent of PSI over-reduction under FL was largely alleviated by pre-illumination at HL when compared with pre-illumination under ML. Furthermore, pre-illumination at HL accelerated the activation rate of CEF but did not affect the activation of non-photochemical quenching and linear electron flow from photosystem II under FL. Therefore, such increased CEF activity by pre-illumination under HL alleviated PSI over-reduction under FL by facilitating the electron sink downstream of PSI. Taking together, pre-illumination at HL protects PSI under FL through acceptor-side regulation.


Asunto(s)
Adaptación Ocular/fisiología , Morus/metabolismo , Orchidaceae/metabolismo , Oxidación-Reducción , Complejo de Proteína del Fotosistema I/metabolismo , Hojas de la Planta/metabolismo
11.
AoB Plants ; 13(5): plab053, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34646434

RESUMEN

Members of the genus Paphiopedilum are world-famous for their large, colourful flowers, unique floral morphology and long floral lifespan. Most Paphiopedilum species bloom in spring or autumn. The control of flowering time is of great significance to the commercial production of floral crops, because it affects the sales and prices of flowers. However, the mechanism that regulates when Paphiopedilum species bloom is unclear. In the present study, floral bud initiation and development of P. micranthum (spring-flowering species with one flower per stalk), P. dianthum (autumn-flowering species with multiple flowers per stalk) and P. henryanum (autumn-flowering species with one flower per stalk) were investigated by morphological and anatomical methods. We divided Paphiopedilum floral bud differentiation into six phases: the initiation of differentiation, inflorescence primordium differentiation, flower primordium differentiation, sepal primordium differentiation, petal primordium differentiation and column primordium differentiation. We found that the timing of floral bud differentiation for the three species was synchronized when experiencing the same environment, while the period from initiation to flowering largely differed. In addition, initiation of floral bud differentiation in P. dianthum was earlier at a warmer environment. The difference in flowering time of three species was mainly caused by the duration of floral bud development, rather than the initiation time. The findings were of great significance for the cultivation and flowering regulation of Paphiopedilum species.

12.
Cells ; 10(6)2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-34200524

RESUMEN

Fluctuating light can cause selective photoinhibition of photosystem I (PSI) in angiosperms. Cyclic electron flow (CEF) around PSI and electron flux from water via the electron transport chain to oxygen (the water-water cycle) play important roles in coping with fluctuating light in angiosperms. However, it is unclear whether plant species in the same genus employ the same strategy to cope with fluctuating light. To answer this question, we measured P700 redox kinetics and chlorophyll fluorescence under fluctuating light in two Paphiopedilum (P.) Pftzer (Orchidaceae) species, P. dianthum and P. micranthum. After transition from dark to high light, P. dianthum displayed a rapid re-oxidation of P700, while P. micranthum displayed an over-reduction of P700. Furthermore, the rapid re-oxidation of P700 in P. dianthum was not observed when measured under anaerobic conditions. These results indicated that photo-reduction of O2 mediated by the water-water cycle was functional in P. dianthum but not in P. micranthum. Within the first few seconds after an abrupt transition from low to high light, PSI was highly oxidized in P. dianthum but was highly reduced in P. micranthum, indicating that the different responses of PSI to fluctuating light between P. micranthum and P. dianthum was attributed to the water-water cycle. In P. micranthum, the lack of the water-water cycle was partially compensated for by an enhancement of CEF. Taken together, P. dianthum and P. micranthum employed different strategies to cope with the abrupt change of light intensity, indicating the diversity of strategies for photosynthetic acclimation to fluctuating light in these two closely related orchid species.


Asunto(s)
Orchidaceae/fisiología , Fotosíntesis/fisiología , Complejo de Proteína del Fotosistema I/metabolismo , Transporte de Electrón/fisiología , Especificidad de la Especie
13.
Nat Prod Res ; 35(24): 5948-5953, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32787570

RESUMEN

Nine resorcinol derivatives including two new ones, 5-[(8Z,11Z,14Z)-nonadeca-8,11,14-trienyl] resorcinol (1) and 5-[(8Z,11Z,14E)-heptadeca-8,11,14-trienyl] resorcinol (2), were isolated from the leaves of Syzygium samarangense. The new structures were elucidated by means of extensive spectroscopic techniques including interpretation of 1D and 2D NMR spectra. Among them, compounds 3, 4, 6 and 7 exhibited significant α-glucosidase inhibitory activities with IC50 of 3.16, 3.16, 2.34 and 0.99 µM, respectively. This finding provides evidence that resorcinol derivatives with long aliphatic chain function as new promising antidiabetic alternatives.


Asunto(s)
Syzygium , Inhibidores de Glicósido Hidrolasas/farmacología , Extractos Vegetales/farmacología , Hojas de la Planta , Resorcinoles/farmacología , alfa-Glucosidasas
14.
Plant Divers ; 42(5): 362-369, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33134620

RESUMEN

Mycorrhizal fungi are essential for the growth and development of both epiphytic (growing on trees) and lithophytic (growing on rocks) orchids. Previous studies indicate that in lowland tropical areas, orchid mycorrhizal fungal compositions are correlated with the life form (i.e., epiphytic, lithophytic, or terrestrial) of their host plants. We therefore tested if a similar correlation exists in an orchid distributed at higher elevations. Coelogyne corymbosa is an endangered ornamental orchid species that can be found as a lithophyte and epiphyte in subtropical to subalpine areas. Based on high-throughput sequencing of the fungal internal transcribed spacer 2 (ITS2)-rDNA region of mycorrhizae of C. corymbosa, we detected 73 putative mycorrhizal fungal Operational Taxonomic Units (OTUs). The OTUs of two dominant lineages (Cantharellales and Sebacinales) detected from C. corymbosa are phylogenetically different from those of other species within the genus Coelogyne, indicating that different orchid species prefer specific mycorrhizal fungi. We also found that the Non-metric multidimensional scaling (NMDS) plots of orchid mycorrhizal fungi were not clustered with life form, the variations among orchid mycorrhizal fungal communities of different life forms were not significant, and most of the OTUs detected from epiphytic individuals were shared by the lithophytic plants, suggesting that orchid mycorrhizal associations of C. corymbosa were not affected by life form. These findings provide novel insights into mycorrhizal associations with endangered ornamental orchids.

15.
Plant Divers ; 42(3): 181-188, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32695951

RESUMEN

Plants of the genus Camellia are widely cultivated throughout the world as ornamentals because of their bright and large flowers. The widely cultivated varieties are mainly derived from the mutant lines and hybrid progenies of Camellia japonica Linn. and Camellia reticulata Lindl. While their geographical distributions and environmental adaptabilities are significantly different, no systematic comparison has been conducted between these two species. To investigate differences in how these plants have adapted to their environments, we measured photosynthesis and 20 leaf functional traits of C. japonica and C. reticulata grown under the same conditions. Compared with C. japonica, C. reticulata showed higher values for light saturation point, light-saturated photosynthetic rate, leaf dry mass per unit area and stomatal area, but lower values for apparent quantum efficiency, leaf size, stomatal density and leaf nitrogen content per unit mass. Stomatal area was positively correlated with light-saturated photosynthetic rate and light saturation point, but negatively correlated with stomatal density. The differences between C. reticulata and C. japonica were mainly reflected in their adaptations to light intensity and leaf morphological traits. C. reticulata is better adapted to high light intensity than C. japonica. This difference is related to the two species' differing life forms. Thus, leaf morphological traits have played an important role in the light adaptation of C. reticulata and C. japonica, and might be first noticed and selected during the breeding process. These findings will contribute to the cultivation of camellia plants.

16.
Photosynth Res ; 144(1): 13-21, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32166520

RESUMEN

Upon a sudden transition from high to low light, the rate of CO2 assimilation (AN) in some plants first decreases to a low level before gradually becoming stable. However, the underlying mechanisms remain controversial. The activity of chloroplast ATP synthase (gH+) is usually depressed under high light when compared with low light. Therefore, we hypothesize that upon a sudden transfer from high to low light, the relatively low gH+ restricts ATP synthesis and thus causes a reduction in AN. To test this hypothesis, we measured gas exchange, chlorophyll fluorescence, P700 redox state, and electrochromic shift signals in Bletilla striata (Orchidaceae). After the transition from saturating to lower irradiance, AN and ETRII decreased first to a low level and then gradually increased to a stable value. Within the first seconds after transfer from high to low light, gH+ was maintained at low levels. During further exposure to low light, gH+ gradually increased to a stable value. Interestingly, a tight positive relationship was found between gH+ and ETRII. These results suggested that upon a sudden transition from high to low light, AN was restricted by gH+ at the step of ATP synthesis. Taken together, we propose that the decline in AN upon sudden transfer from high to low light is linked to the slow kinetics of chloroplast ATP synthase.


Asunto(s)
ATPasas de Translocación de Protón de Cloroplastos/metabolismo , Luz , Orchidaceae/enzimología , Fotosíntesis/fisiología , Cinética
17.
Plant Sci ; 289: 110275, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31623777

RESUMEN

Owing to the high leaf mass per area, alpine evergreen sclerophyllous Rhododendron have low values of mesophyll conductance (gm). The resulting low chloroplast CO2 concentration aggravates photorespiration, which requires a higher ATP/NADPH ratio. However, the significance of photorespiration and underlying mechanisms of energy balance in these species are little known. In this study, eight alpine evergreen sclerophyllous Rhododendron species grown in a common garden were tested for their gm, electron flow to photorespiration, and energy balancing. Under saturating light, gm was the most limiting factor for net photosynthesis (AN) in all species, and the species differences in AN were primarily driven by gm rather than stomatal conductance. The total electron flow through photosystem II (ETRII) nearly equaled the electron transport required for Rubisco carboxylation and oxygenation. Furthermore, blocking electron flow to photosystem I with appropriate inhibitors showed that electron flow to plastic terminal oxidase was not observed. As a result, these studied species showed little alternative electron flow mediated by water-water cycle or plastic terminal oxidase. By comparison, the ratio of electron transport consumed by photorespiration to ETRII (JPR/ETRII), ranging from 43%∼55%, was negatively correlated to AN and gm. Furthermore, the increased ATP production required by enhanced photorespiration was regulated by cyclic electron flow around photosystem I. These results indicate that photorespiration is the major electron sink for dissipation of excess excitation energy in the alpine evergreen sclerophyllous Rhododendron species. The coordination of gm, photorespiration and cyclic electron flow is important for sustaining leaf photosynthesis.


Asunto(s)
Transporte de Electrón/efectos de la radiación , Luz , Fotosíntesis/efectos de la radiación , Complejo de Proteína del Fotosistema II/metabolismo , Rhododendron/fisiología , Altitud , Rhododendron/efectos de la radiación , Especificidad de la Especie
18.
Biochim Biophys Acta Bioenerg ; 1860(11): 148073, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31473302

RESUMEN

Photosystem I (PSI) is a potential target of photoinhibition under fluctuating light. However, photosynthetic regulation under fluctuating light in field-grown plants is little known. Furthermore, it is unclear how young leaves protect PSI against fluctuating light under natural field conditions. In the present study, we examined chlorophyll fluorescence, P700 redox state and the electrochromic shift signal in the young and mature leaves of field-grown Cerasus cerasoides (Rosaceae). Within the first seconds after any increase in light intensity, young leaves showed higher proton gradient (ΔpH) across the thylakoid membranes than the mature leaves, preventing over-reduction of PSI in the young leaves. As a result, PSI was more tolerant to fluctuating light in the young leaves than in the mature leaves. Interestingly, after transition from low to high light, the activity of cyclic electron flow (CEF) in young leaves increased first to a high level and then decreased to a stable value, while this rapid stimulation of CEF was not observed in the mature leaves. Furthermore, the over-reduction of PSI significantly stimulated CEF in the young leaves but not in the mature leaves. Taken together, within the first seconds after any increase in illumination, the stimulation of CEF favors the rapid lumen acidification and optimizes the PSI redox state in the young leaves, protecting PSI against photoinhibition under fluctuating light in field-grown plants.


Asunto(s)
Luz , Fotosíntesis/fisiología , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Prunus/crecimiento & desarrollo , Prunus/fisiología , Adaptación Fisiológica , Concentración de Iones de Hidrógeno , Oxidación-Reducción , Periodicidad , Fotosíntesis/efectos de la radiación , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/efectos de la radiación , Protones , Prunus/efectos de la radiación , Tilacoides/fisiología , Tilacoides/efectos de la radiación
19.
Physiol Mol Biol Plants ; 25(4): 991-1008, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31402822

RESUMEN

Rhododendron delavayi is an alpine evergreen ornamental plant, but water shortage limits its growth and development in urban gardens. However, the adaptive mechanism of alpine evergreen rhododendrons to drought remains unclear. Here, a water control experiment was conducted to study the physiological and transcriptomic response of R. delavayi to drought. The drought treatment for 9 days decreased photosynthetic rate, induced accumulation of reactive oxygen species (ROS), and damaged chloroplast ultrastructure of R. delavayi. However, the photosynthetic rate quickly recovered to the level before treatment when the plants were re-watered. De novo assembly of RNA-Seq data generated 86,855 unigenes with an average length of 1870 bp. A total of 22,728 differentially expressed genes (DEGs) were identified between the control and drought plants. The expression of most DEGs related to photosynthesis were down-regulated during drought stress, and were up-regulated when the plants were re-watered, including the DEGs encoding subunits of light-harvesting chlorophyll-protein complex, photosystem II and photosystem I reaction center pigment-protein complexes, and photosynthetic electron transport. The expressions of many DEGs related to signal transduction, flavonoid biosynthesis and antioxidant activity were also significantly affected by drought stress. The results indicated that the response of R. delavayi to drought involved multiple physiological processes and metabolic pathways. Photosynthetic adjustment, ROS-scavenging system, abscisic acid and brassinosteroid signal transduction pathway may play important roles to improve drought tolerance of R. delavayi. Our findings provided valuable information for understanding the mechanisms of drought tolerance employed by Rhododendron species.

20.
Biopolymers ; 110(8): e23282, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30977898

RESUMEN

How to characterize short protein sequences to make an effective connection to their functions is an unsolved problem. Here we propose to map the physicochemical properties of each amino acid onto unit spheres so that each protein sequence can be represented quantitatively. We demonstrate the usefulness of this representation by applying it to the prediction of cell penetrating peptides. We show that its combination with traditional composition features yields the best performance across different datasets, among several methods compared. For the convenience of users, a web server has been established for automatic calculations of the proposed features at http://biophy.dzu.edu.cn/SNumD/.


Asunto(s)
Algoritmos , Proteínas/química , Secuencia de Aminoácidos , Análisis de Secuencia de Proteína/métodos , Interfaz Usuario-Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...