Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Food Chem ; 456: 140033, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38870822

RESUMEN

Myosin from bighead carp (Aristichthys nobilis) as a main type of fish protein possesses a good emulsifying ability. However, whether bighead carp myosin (BCM) could construct stable Pickering emulsions is still unclear. Therefore, myosin particles and Pickering emulsions stabilized by bighead carp myosin (BCMPEs) were analyzed. The surface structure of BCM particles at 0.6 mol/L NaCl treatment was uniform and compact with a contact angle of 86.4 ± 2.7°, exhibiting the potential ability to construct O/W Pickering emulsions. The size and flocculation index (FI) of BCMPEs decreased with the increase in BCM concentrations of 1%-4% (w/v). Reversely, the size of BCMPEs increased with the increase in oil-water ratios. BCM particles could uniformly distribute at the oil-water interface to stabilize BCMPEs at a BCM concentration of 4% (w/v) and an oil-water ratio of 6:4 (v/v). This study could help explore fish proteins to construct Pickering emulsions for the deep processing of fish products.

2.
J Chromatogr A ; 1705: 464164, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37419017

RESUMEN

Metal-organic framework/silica composite (SSU) were prepared by growing UiO-66 on the amino-functionalized SiO2 core-shell spheres (SiO2@dSiO2) via a simple one-pot synthesis approach. By controlling the concentration of Zr4+, the obtained SSU have two different morphologies: spheres-on-sphere and layer-on-sphere. The spheres-on-sphere structure is formed by the aggregation of UiO-66 nanocrystals on the surface of SiO2@dSiO2 spheres. SSU-5 and SSU-20, which contain spheres-on-sphere composites have mesopores with a pore size of about 45 nm in addition to the characteristic micropores of UiO-66 with a pore size of 1 nm. In addition, UiO-66 nanocrystals were grown both inside and outside the pores of SiO2@dSiO2, resulting in a 27% loading of UiO-66 in the SSU. The layer-on-sphere is the surface of SiO2@dSiO2 covered with a layer of UiO-66 nanocrystals. SSU with this structure has only a characteristic pore size of about 1 nm belonging to UiO-66 and is therefore not suitable as a packed stationary phase for high performance liquid chromatography. The SSU spheres were packed into columns and tested for the separation of xylene isomers, aromatics, biomolecules, acidic and basic analytes. With both micropores and mesopores, SSU with spheres-on-sphere structure achieved baseline separation of both small and large molecules. Efficiencies up to 48,150, 50,452 and 41,318 plates m - 1 were achieved for m-xylene, p-xylene and o-xylene, respectively. The relative standard deviations of the retention times of anilines for run-to-run, day-to-day and column-to-column were all less than 6.1%. The results show that the SSU with spheres-on-sphere structure has great potential for high performance chromatographic separation.


Asunto(s)
Estructuras Metalorgánicas , Ácidos Ftálicos , Cromatografía Líquida de Alta Presión/métodos , Dióxido de Silicio/química
3.
Anal Chim Acta ; 1272: 341527, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37355322

RESUMEN

BACKGROUND: Due to its high chemical stability, sufficient rigidity and zwitterionic ion exchange properties, TiO2 can be considered as an alternative stationary phase material to SiO2 for high performance liquid chromatography. TiO2 stationary phase is usually prepared by coating TiO2 onto SiO2 support by sol-gel method. However, in the traditional coating method, in order to overcome the rapid hydrolysis rate of tetrabutyl orthotitanate, only a very low concentration of tetrabutyl orthotitanate can be used, resulting in a low loading of TiO2 on the support. RESULTS: TiO2 core-shell spheres with a good monodispersity were prepared using 0.25 mol L-1 tetrabutyl orthotitanate. The specific surface area, pore volume, pore diameter and TiO2 loading of the TiO2 core-shell spheres were 66 m2 g-1, 0.15 cm3 g-1, 9.8 nm and 57%, respectively. The core-shell spheres were derivatized with n-octadecyltrichlorosilane and then packed into a stainless steel column to test the separation performance for neutral, basic and acidic samples in liquid chromatography. A baseline separation of polyaromatic hydrocarbons was achieved, showing a column efficiency for fluorene of 118075 plates m-1. The prepared stationary phase was also used to separate acidic and basic mixtures, and column efficiencies of 54500 and 25836 plates m-1 were obtained for N,N-dinitroaniline and p-chlorophenol, respectively. The relative standard deviations of the retention times of polyaromatic hydrocarbons for run-to-run, day-to-day and column-to-column repeatability were all below 5.1%. SIGNIFICANCE AND NOVELTY: This work demonstrated that TiO2 can be coated in the pores of the shell of SiO2 core-shell spheres with high TiO2 loading using a high concentration of tetrabutyl orthotitanate as the titania source. The experimental results show that the TiO2 coated core-shell spheres can be a good alternative stationary phase for liquid chromatography.


Asunto(s)
Hidrocarburos Aromáticos , Dióxido de Silicio , Cromatografía Líquida de Alta Presión/métodos , Dióxido de Silicio/química , Microesferas
4.
ACS Omega ; 7(20): 17014-17023, 2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35647446

RESUMEN

Conductive aramid (PPTA) fibers are highly needed for making flexible conductive materials, antistatic materials, and electromagnetic shielding materials. In this work, silver-plated conductive PPTA fibers with high conductivity and excellent mechanical properties were prepared by the electroless plating of PPTA fibers modified with crosslinked hyperbranched polyamide-amine (HPAMAM). The crosslinked HPAMAM creates a stable interface between the PPTA fibers and the silver plating. The morphology and physicochemical properties of the modified and the silver-plated fibers were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, atomic force microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and thermogravimetric analysis. Three epoxy crosslinking agents with different chain lengths were used to crosslink HPAMAM, and the effects of HPAMAM concentration, crosslinking agent dosage, and crosslinking time on the resistance of the fibers were studied. The long chain crosslinking agent appears to be beneficial to silver plating. The lowest resistance (0.067 Ω/cm) was attained when HPAMAM was modified by diethylene glycol diglycidyl ether (1:1 molar ratio), and 20 g/L HPAMAM was used to modify the PPTA fibers. The tensile strength of the original PPTA fibers decreased by only 3% or less after silver plating.

5.
Biomed Pharmacother ; 146: 112504, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34922110

RESUMEN

CEMIP was initially identified as an inner-ear specific protein in which three-point mutations cause folding changes in protein structure associated with non-syndromic hearing loss. CEMIP was also involved in other cellular activities, such as hyaluronan depolymerization independent of CD44 and other hyaluronidases. Growing evidence has demonstrated that CEMIP is involved in the progression of various tumors. However, whether the oncogenic effects of CEMIP relies on its enzymatic activity remain elusive. CEMIP is significantly related to metastasis and poor prognosis in patients with various tumors, suggesting that CEMIP is a potential, highly specific diagnostic tumor marker. Most preclinical experiments have shown that the overexpression of CEMIP in tumors mainly affects the adhesion, metastasis, and invasion of tumor cells and EMT. Other studies have also demonstrated that CEMIP can promote a variety of tumor processes by affecting tumor proliferation, dedifferentiation, and the tumor microenvironment. In terms of molecular mechanisms, existing research has shown that CEMIP mainly affects the WNT and EGFR signaling pathways. In addition, a variety of miRNAs have been shown to inhibit CEMIP in tumors. This paper elaborates on the clinical characteristics and regulatory dysfunction of CEMIP in different cancers. CEMIP provides a new potential target for therapy of multiple tumors, which is worthy of further study.


Asunto(s)
Hialuronoglucosaminidasa/biosíntesis , Neoplasias/patología , Biomarcadores de Tumor , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Receptores ErbB/metabolismo , Humanos , Hialuronoglucosaminidasa/farmacología , Invasividad Neoplásica/patología , Metástasis de la Neoplasia , Transducción de Señal/fisiología , Microambiente Tumoral/fisiología , Proteínas Wnt/metabolismo
6.
Oncol Lett ; 11(6): 4203-4207, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27313767

RESUMEN

Alantolactone is the active ingredient in frankincense, and is extracted from the dry root of elecampane. It has a wide variety of uses, including as an insect repellent, antibacterial, antidiuretic, analgesic and anticancer agent. In addition, alantolactone induces apoptosis of human cervical cancer cells, however, its mechanism of action remains to be elucidated. Therefore, the present study investigated whether alantolactone was able to induce apoptosis of human cervical cancer cells, and its potential mechanisms of action were analyzed. Treatment of HeLa cells with alantolactone (0, 10, 20, 30, 40, 50 and 60 µM) for 12 h significantly inhibited growth in a dose-dependent manner. Cells treated with 30 µM of alantolactone for 0, 3, 6 and 12 h demonstrated marked induction of apoptosis in a time-dependent manner. Treatment of HeLa cells with 30 µM of alantolactone for 0, 3, 6 and 12 h significantly induced the generation of reactive oxygen species (ROS) and inhibited glutathione (GSH) production in HeLa cells in a dose-dependent manner. Alantolactone additionally markedly inhibited the Bcl-2/Bax signaling pathway in HeLa cells. Therefore, administration of alantolactone induced apoptosis of human cervical cancer cells via ROS generation, GSH depletion and inhibition of the Bcl-2/Bax signaling pathway.

7.
J Sep Sci ; 38(12): 2101-8, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25864707

RESUMEN

An ionic liquid was incorporated into the porous polymer monoliths to afford stationary phases with enhanced chromatographic performance for small molecules in reversed-phase high-performance liquid chromatography. The effect of the ionic liquid in the polymerization mixture on the performance of the monoliths was studied in detail. While monoliths without ionic liquid exhibited poor resolution and low efficiency, the addition of ionic liquid to the polymerization mixture provides highly increased resolution and high efficiency. The chromatographic performances of the monoliths were demonstrated by the separations of various small molecules including aromatic hydrocarbons, isomers, and homologues using a binary polar mobile phase. The present column efficiency reached 27 000 plates/m, which showed that the ionic liquid monoliths are alternative stationary phases in the separation of small molecules by high-performance liquid chromatography.

9.
J Chromatogr Sci ; 53(4): 531-6, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25234385

RESUMEN

A novel organic monolithic stationary phase was prepared for high-performance liquid chromatography (HPLC) by in situ copolymerization. In which, triallyl isocyanurate (TAIC) and trimethylolpropane triacrylate (TMPTA) in a binary porogenic solvent consisting of polyethylene glycol 200 and 1, 2-propanediol were used. The resultant monoliths with different column properties (e.g., morphology and pressure) were optimized by adjusting the ratio of TMPTA/TAIC and the composition of porogenic solvent. The resulting poly(TAIC-co-TMPTA) monolith showed a relatively homogeneous structure, good permeability and mechanical stability. The chemical group of the monolith was assayed by the infrared spectra method, the morphology of monolithic material was studied by scanning electron microscopy and the pore size distribution was determined by a mercury porosimeter. A series of small molecules were used to evaluate the column performance in terms of hydrophobic mode. At an optimized flow rate of 1.0 mL min(-1), the theoretical plate number of analyte was >15,000 plates m(-1). These applications demonstrated that the monoliths could be successfully used as the stationary phase in conjunction with HPLC to separate small molecules from the mixture.


Asunto(s)
Acrilatos/química , Acrilatos/síntesis química , Cromatografía Líquida de Alta Presión/instrumentación , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Químicos , Polimerizacion , Porosidad , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...