Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Stem Cell ; 30(9): 1235-1245.e6, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37683604

RESUMEN

Heterologous organ transplantation is an effective way of replacing organ function but is limited by severe organ shortage. Although generating human organs in other large mammals through embryo complementation would be a groundbreaking solution, it faces many challenges, especially the poor integration of human cells into the recipient tissues. To produce human cells with superior intra-niche competitiveness, we combined optimized pluripotent stem cell culture conditions with the inducible overexpression of two pro-survival genes (MYCN and BCL2). The resulting cells had substantially enhanced viability in the xeno-environment of interspecies chimeric blastocyst and successfully formed organized human-pig chimeric middle-stage kidney (mesonephros) structures up to embryonic day 28 inside nephric-defective pig embryos lacking SIX1 and SALL1. Our findings demonstrate proof of principle of the possibility of generating a humanized primordial organ in organogenesis-disabled pigs, opening an exciting avenue for regenerative medicine and an artificial window for studying human kidney development.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Humanos , Porcinos , Animales , Mesonefro , Embrión de Mamíferos , Blastocisto , Mamíferos , Proteínas de Homeodominio
2.
PLoS One ; 18(8): e0289509, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37540669

RESUMEN

Transcription activator-like effectors (TALEs) have been widely used for genome editing, transcriptional regulation, and locus-specific DNA imaging. However, TALEs are difficult to handle in routine laboratories because of their complexity and the considerable time consumed in TALE construction. Here, we described a simple and rapid TALE assembly method based on uracil-specific excision reagent (USER) cloning. Polymerase chain reaction was amplified with TALE trimer templates and deoxyuridine-containing primers. The products were treated with USER at 37°C for 30 min, followed by the treatment of T4 DNA Ligase at 16°C for 30 min. The TALE trimer unit could be rejoined hierarchically to form complete TALE expression vectors with high efficiency. This method was adopted to construct TALE-deaminases, which were used in combination with Cas9 nickases to generate efficient C-to-T or A-to-G base editing while eliminating predictable DNA off-target effects. This improved USER assembly is a simple, rapid, and laboratory-friendly TALE construction technique that will be valuable for DNA targeting.


Asunto(s)
Proteínas de Unión al ADN , Edición Génica , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica , Efectores Tipo Activadores de la Transcripción/genética , ADN/genética , ADN/metabolismo , Clonación Molecular
3.
Commun Biol ; 5(1): 1163, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36323848

RESUMEN

Cas12a can process multiple sgRNAs from a single transcript of CRISPR array, conferring advantages in multiplexed base editing when incorporated into base editor systems, which is extremely helpful given that phenotypes commonly involve multiple genes or single-nucleotide variants. However, multiplexed base editing through Cas12a-derived base editors has been barely reported, mainly due to the compromised efficiencies and restricted protospacer-adjacent motif (PAM) of TTTV for wild-type Cas12a. Here, we develop Cas12a-mediated cytosine base editor (CBE) and adenine base editor (ABE) systems with elevated efficiencies and expanded targeting scope, by combining highly active deaminases with Lachnospiraceae bacterium Cas12a (LbCas12a) variants. We confirm that these CBEs and ABEs can perform efficient C-to-T and A-to-G conversions, respectively, on targets with PAMs of NTTN, TYCN, and TRTN. Notably, multiplexed base editing can be conducted using the developed CBEs and ABEs in somatic cells and embryos. These Cas12a variant-mediated base editors will serve as versatile tools for multiplexed point mutation, which is notably important in genetic improvement, disease modeling, and gene therapy.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Citosina , Adenina , Mutación Puntual
4.
FASEB J ; 36(11): e22611, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36250915

RESUMEN

Obesity is among the strongest risk factors for type 2 diabetes (T2D). The CREBRF missense allele rs373863828 (p. Arg457Gln, p. R457Q) is associated with increased body mass index but reduced risk of T2D in people of Pacific ancestry. To investigate the functional consequences of the CREBRF variant, we introduced the corresponding human mutation R457Q into the porcine genome. The CREBRFR457Q pigs displayed dramatically increased fat deposition, which was mainly distributed in subcutaneous adipose tissue other than visceral adipose tissue. The CREBRFR457Q variant promoted preadipocyte differentiation. The increased differentiation capacity of precursor adipocytes conferred pigs the unique histological phenotype that adipocytes had a smaller size but a greater number in subcutaneous adipose tissue (SAT) of CREBRFR457Q variant pigs. In addition, in SAT of CREBRFR457Q pigs, the contents of the peroxidative metabolites 4-hydroxy-nonenal and malondialdehyde were significantly decreased, while the activity of antioxidant enzymes, such as glutathione peroxidase, superoxide dismutase, and catalase, was increased, which was in accordance with the declined level of the reactive oxygen species (ROS) in CREBRFR457Q pigs. Together, these data supported a causal role of the CREBRFR457Q variant in the pathogenesis of obesity, partly via adipocyte hyperplasia, and further suggested that reduced oxidative stress in adipose tissue may mediate the relative metabolic protection afforded by this variant despite the related obesity.


Asunto(s)
Diabetes Mellitus Tipo 2 , Animales , Antioxidantes , Catalasa , Glutatión Peroxidasa/metabolismo , Humanos , Malondialdehído , Obesidad/genética , Especies Reactivas de Oxígeno , Superóxido Dismutasa/metabolismo , Porcinos
5.
Sci China Life Sci ; 65(11): 2269-2286, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35596888

RESUMEN

Inducible expression systems are indispensable for precise regulation and in-depth analysis of biological process. Binary Tet-On system has been widely employed to regulate transgenic expression by doxycycline. Previous pig models with tetracycline regulatory elements were generated through random integration. This process often resulted in uncertain expression and unpredictable phenotypes, thus hindering their applications. Here, by precise knock-in of binary Tet-On 3G elements into Rosa26 and Hipp11 locus, respectively, a double knock-in reporter pig model was generated. We characterized excellent properties of this system for controllable transgenic expression both in vitro and in vivo. Two attP sites were arranged to flank the tdTomato to switch reporter gene. Single or multiple gene replacement was efficiently and faithfully achieved in fetal fibroblasts and nuclear transfer embryos. To display the flexible application of this system, we generated a pig strain with Dox-inducing hKRASG12D expression through phiC31 integrase-mediated cassette exchange. After eight months of Dox administration, squamous cell carcinoma developed in the nose, mouth, and scrotum, which indicated this pig strain could serve as an ideal large animal model to study tumorigenesis. Overall, the established pig models with controllable and switchable transgene expression system will provide a facilitating platform for transgenic and biomedical research.


Asunto(s)
Terapia Genética , Integrasas , Masculino , Animales , Porcinos , Integrasas/genética , Integrasas/metabolismo , Transgenes , Animales Modificados Genéticamente , Expresión Génica
6.
Stem Cell Reports ; 17(5): 1059-1069, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35427483

RESUMEN

Obtaining functional human cells through interspecies chimerism with human pluripotent stem cells (hPSCs) remains unsuccessful due to its extremely low efficiency. Here, we show that hPSCs failed to differentiate and contribute teratoma in the presence of mouse PSCs (mPSCs), while MYCN, a pro-growth factor, dramatically promotes hPSC contributions in teratoma co-formation by hPSCs/mPSCs. MYCN combined with BCL2 (M/B) greatly enhanced conventional hPSCs to integrate into pre-implantation embryos of different species, such as mice, rabbits, and pigs, and substantially contributed to mouse post-implantation chimera in embryonic and extra-embryonic tissues. Strikingly, M/B-hPSCs injected into pre-implantation Flk-1+/- mouse embryos show further enhanced chimerism that allows for obtaining live human CD34+ blood progenitor cells from chimeras through cell sorting. The chimera-derived human CD34+ cells further gave rise to various subtype blood cells in a typical colony-forming unit (CFU) assay. Thus, we provide proof of concept to obtain functional human cells through enhanced interspecies chimerism with hPSCs.


Asunto(s)
Células Madre Pluripotentes , Teratoma , Animales , Diferenciación Celular , Quimera , Quimerismo , Humanos , Ratones , Proteína Proto-Oncogénica N-Myc , Conejos , Porcinos
7.
Mol Ther Methods Clin Dev ; 24: 332-341, 2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-35229007

RESUMEN

Pluripotent stem cells (PSCs) are promising in regenerative medicine. A major challenge of PSC therapy is the risk of teratoma formation because of the contamination of undifferentiated stem cells. Constitutive promoters or endogenous SOX2 promoters have been used to drive inducible caspase-9 (iCasp9) gene expression but cannot specifically eradicate undifferentiated PSCs. Here, we inserted iCasp9 gene into the endogenous OCT4 locus of human and mouse PSCs without affecting their pluripotency. A chemical inducer of dimerization (CID), AP1903, induced iCasp9 activation, which led to the apoptosis of specific undifferentiated PSCs in vitro and in vivo. Differentiated cell lineages survived because of the silence of the endogenous OCT4 gene. Human and mouse PSCs were controllable when CID was administrated within 2 weeks after PSC injection in immunodeficient mice. However, an interval longer than 2 weeks caused teratoma formation and mouse death because a mass of somatic cells already differentiated from the PSCs. In conclusion, we have developed a specific and efficient PSC suicide system that will be of value in the clinical applications of PSC-based therapy.

9.
Mol Ther ; 29(3): 1001-1015, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33221434

RESUMEN

Patients with hereditary tyrosinemia type I (HT1) present acute and irreversible liver and kidney damage during infancy. CRISPR-Cas9-mediated gene correction during infancy may provide a promising approach to treat patients with HT1. However, all previous studies were performed on adult HT1 rodent models, which cannot authentically recapitulate some symptoms of human patients. The efficacy and safety should be verified in large animals to translate precise gene therapy to clinical practice. Here, we delivered CRISPR-Cas9 and donor templates via adeno-associated virus to newborn HT1 rabbits. The lethal phenotypes could be rescued, and notably, these HT1 rabbits reached adulthood normally without 2-(2-nitro-4-trifluoromethylbenzyol)-1,3 cyclohexanedione administration and even gave birth to offspring. Adeno-associated virus (AAV)-treated HT1 rabbits displayed normal liver and kidney structures and functions. Homology-directed repair-mediated precise gene corrections and non-homologous end joining-mediated out-of-frame to in-frame corrections in the livers were observed with efficiencies of 0.90%-3.71% and 2.39%-6.35%, respectively, which appeared to be sufficient to recover liver function and decrease liver and kidney damage. This study provides useful large-animal preclinical data for rescuing hepatocyte-related monogenetic metabolic disorders with precise gene therapy.


Asunto(s)
Sistemas CRISPR-Cas , Dependovirus/genética , Edición Génica , Vectores Genéticos/administración & dosificación , Hidrolasas/genética , Tirosinemias/terapia , Animales , Animales Recién Nacidos , Reparación del ADN por Unión de Extremidades , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica , Terapia Genética , Riñón/metabolismo , Hígado/metabolismo , Masculino , RNA-Seq , Conejos , Tirosinemias/genética , Tirosinemias/patología
10.
BMC Biol ; 18(1): 131, 2020 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-32967664

RESUMEN

BACKGROUND: Many favorable traits of crops and livestock and human genetic diseases arise from multiple single nucleotide polymorphisms or multiple point mutations with heterogeneous base substitutions at the same locus. Current cytosine or adenine base editors can only accomplish C-to-T (G-to-A) or A-to-G (T-to-C) substitutions in the windows of target genomic sites of organisms; therefore, there is a need to develop base editors that can simultaneously achieve C-to-T and A-to-G substitutions at the targeting site. RESULTS: In this study, a novel fusion adenine and cytosine base editor (ACBE) was generated by fusing a heterodimer of TadA (ecTadAWT/*) and an activation-induced cytidine deaminase (AID) to the N- and C-terminals of Cas9 nickase (nCas9), respectively. ACBE could simultaneously induce C-to-T and A-to-G base editing at the same target site, which were verified in HEK293-EGFP reporter cell line and 45 endogenous gene loci of HEK293 cells. Moreover, the ACBE could accomplish simultaneous point mutations of C-to-T and A-to-G in primary somatic cells (mouse embryonic fibroblasts and porcine fetal fibroblasts) in an applicable efficiency. Furthermore, the spacer length of sgRNA and the length of linker could influence the dual base editing activity, which provided a direction to optimize the ACBE system. CONCLUSION: The newly developed ACBE would expand base editor toolkits and should promote the generation of animals and the gene therapy of genetic diseases with heterogeneous point mutations.


Asunto(s)
Adenina/metabolismo , Citosina/metabolismo , Embrión de Mamíferos/metabolismo , Edición Génica/instrumentación , Mutación Puntual , Animales , Feto/metabolismo , Fibroblastos/metabolismo , Células HEK293 , Humanos , Ratones , Sus scrofa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...