Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 740
Filtrar
1.
Diagn Pathol ; 19(1): 94, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38970112

RESUMEN

BACKGROUND: Uterine sarcoma is a rare and heterogeneous gynecological malignancy characterized by aggressive progression and poor prognosis. The current study aimed to investigate the relationship between clinicopathological characteristics and the prognosis of uterine sarcoma in Chinese patients. METHODS: In this single-center retrospective study, we reviewed the medical records of 75 patients with histologically verified uterine sarcoma treated at the First Affiliated Hospital of Xi'an Jiaotong University between 2011 and 2020. Information on clinical characteristics, treatments, pathology and survival was collected. Progression-free survival (PFS) and overall survival (OS) were visualized in Kaplan-Meier curves. Prognostic factors were identified using the log-rank test for univariate analysis and Cox-proportional hazards regression models for multivariate analysis. RESULTS: The histopathological types included 36 endometrial stromal sarcomas (ESS,48%), 33 leiomyosarcomas (LMS,44%) and 6 adenosarcomas (8%). The mean age at diagnosis was 50.2 ± 10.7 years. Stage I and low-grade accounted for the majority. There were 26 recurrences and 25 deaths at the last follow-up. The mean PFS and OS were 89.41 (95% CI: 76.07-102.75) and 94.03 (95% CI: 81.67-106.38) months, respectively. Univariate analysis showed that > 50 years, post-menopause, advanced stage, ≥ 1/2 myometrial invasion, lymphovascular space invasion and high grade were associated with shorter survival (P < 0.05). Color Doppler flow imaging positive signals were associated with shorter PFS in the LMS group (P = 0.046). The ESS group had longer PFS than that of the LMS group (99.56 vs. 76.05 months, P = 0.043). The multivariate analysis showed that post-menopause and advanced stage were independent risk factors of both PFS and OS in the total cohort and LMS group. In the ESS group, diagnosis age > 50 years and high-grade were independent risk factors of PFS, while high-grade and lymphovascular space invasion were independent risk factors of OS. CONCLUSION: In Chinese patients with uterine sarcoma, post-menopause and advanced stage were associated with a significantly poorer prognosis. The prognosis of ESS was better than that of LMS. Color Doppler flow imaging positive signals of the tumor helped to identify LMS, which needs to be further tested in a larger sample in the future.


Asunto(s)
Neoplasias Uterinas , Humanos , Femenino , Persona de Mediana Edad , Estudios Retrospectivos , Neoplasias Uterinas/patología , Neoplasias Uterinas/mortalidad , China/epidemiología , Adulto , Pronóstico , Sarcoma Estromático Endometrial/patología , Sarcoma Estromático Endometrial/mortalidad , Sarcoma/patología , Sarcoma/mortalidad , Leiomiosarcoma/patología , Leiomiosarcoma/mortalidad , Anciano , Adenosarcoma/patología , Adenosarcoma/mortalidad , Adenosarcoma/terapia , Supervivencia sin Progresión
2.
Sci Total Environ ; 947: 174751, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39004372

RESUMEN

Community assembly processes determine community structure. Deterministic processes are essential for optimizing activated sludge (AS) bioreactor performance. However, the debate regarding the relative importance of determinism versus stochasticity remains contentious, and the influencing factors are indistinct. This study used large-scale 16S rRNA gene data derived from 252 AS samples collected from 28 cities across China to explore the mechanism of AS community assembly. Results showed that the northern communities possessed lower spatial turnover and more significant dispersal limitation than those in the south, whereas the latter had more substantial deterministic processes than the former (14.46 % v.s. 9.12 %). Meanwhile, the communities in the south exhibited lower network complexity and stability. We utilized a structural equation model to explore the drivers of deterministic processes. Results revealed that low network complexity (r = -0.56, P < 0.05) and high quorum sensing bacteria abundance (r = 0.25, P < 0.001) promoted deterministic assembly, which clarifies why determinism was stronger in southern communities than northern ones. Furthermore, total phosphorus and hydraulic retention time were found to be the primary abiotic drivers. These findings provide evidence to understand the community deterministic assembly, which is crucial for resolving community structure and improving bioreactor performance.

3.
Plant Phenomics ; 6: 0197, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39049839

RESUMEN

Due to nutrient stress, which is an important constraint to the development of the global agricultural sector, it is now vital to timely evaluate plant health. Remote sensing technology, especially hyperspectral imaging technology, has evolved from spectral response modes to pattern recognition and vegetation monitoring. This study established a hyperspectral library of 14 NPK (nitrogen, phosphorus, potassium) nutrient stress conditions in rice. The terrestrial hyperspectral camera (SPECIM-IQ) collected 420 rice stress images and extracted as well as analyzed representative spectral reflectance curves under 14 stress modes. The canopy spectral profile characteristics, vegetation index, and principal component analysis demonstrated the differences in rice under different nutrient stresses. A transformer-based deep learning network SHCFTT (SuperPCA-HybridSN-CBAM-Feature tokenization transformer) was established for identifying nutrient stress patterns from hyperspectral images while being compared with classic support vector machines, 1D-CNN (1D-Convolutional Neural Network), and 3D-CNN. The total accuracy of the SHCFTT model under different modeling strategies and different years ranged from 93.92% to 100%, indicating the positive effect of the proposed method on improving the accuracy of identifying nutrient stress in rice.

4.
Food Chem X ; 23: 101599, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-39050677

RESUMEN

Several pre-cooling methods for bok choi were used, such as natural convection pre-cooling (NCPC), strong wind pre-cooling (SWPC), vacuum pre-cooling (VPC), cold water pre-cooling (CWPC), electrolyzed water pre-cooling (EWPC), and fluid ice pre-cooling (FIPC), in order to determine the most suitable precooling method. It was found that VPC reduced the respiration rate, inhibited the increase of malondialdehyde (MDA) and relative electrolyte leakage, and significantly decreased the total bacterial count. This may be due to the rapid decompression process during vacuum pre-cooling, which disrupts the microbial structure and has a certain sterilizing effect. Bok choi pre-cooled by VPC had the best color, hardness value, chlorophyll, titratable acid (TA) content, vitamin C (VC) content, total phenolic (TP) content, soluble sugar content, superoxide dismutase (SOD) activity, ascorbate peroxidase (APX) activity, and catalase (CAT) activity. Therefore, the most suitable pre-cooling method for bok choi among the above pre-cooling methods was the VPC method.

5.
J Agric Food Chem ; 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39054619

RESUMEN

To explore whether oxidative stress caused by 100% CO2 is an inhibitory mechanism against Shewanella putrefaciens, the oxidative stress reaction, antioxidant activity, and damage to the cell membrane, protein, and DNA of CO2-incubated S. putrefaciens at 4 °C were evaluated. Research demonstrated that CO2 caused more severe reactive oxygen species (ROS) accumulation. Simultaneously, weaker •OH/H2O2/O2•--scavenging activity and decreased T-VOC and GSH content were also observed. The activities of antioxidant enzymes (SOD, POD, CAT, and GPX) continuously declined, which might be attributed to the CO2-mediated decrease in the pH value. Correspondingly, the cell membrane was damaged with hyperpolarization, increased permeability, and more severe lipid peroxidation. The expression of total and membrane protein decreased, and the synthesis and activity of extracellular protease were inhibited. DNA was also subjected to oxidative damage and expressed at a lower level. All results collaboratively confirmed that ROS excitation and inhibition of antioxidant activity were important inhibition mechanisms of CO2 on S. putrefaciens.

6.
J Am Chem Soc ; 146(29): 19951-19961, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38963753

RESUMEN

Converting dilute CO2 source into value-added chemicals and fuels is a promising route to reduce fossil fuel consumption and greenhouse gas emission, but integrating electrocatalysis with CO2 capture still faced marked challenges. Herein, we show that a self-healing metal-organic macrocycle functionalized as an electrochemical catalyst to selectively produce methane from flue gas and air with the lowest applied potential so far (0.06 V vs reversible hydrogen electrode, RHE) through an enzymatic activation fashion. The capsule emulates the enzyme' pocket to abstract one in situ-formed CO2-adduct molecule with the commercial amino alcohols, forming an easy-to-reduce substrate-involving clathrate to combine the CO2 capture with electroreduction for a thorough CO2 reduction. We find that the self-healing system exhibited enzymatic kinetics for the first time with the Michaelis-Menten mechanism in the electrochemical reduction of CO2 and maintained a methane Faraday efficiency (FE) of 74.24% with a selectivity of over 99% for continuous operation over 200 h. A consecutive working lab at 50 mA·cm-2, in an eleven-for-one (10 h working and 1 h healing) electrolysis manner, gives a methane turnover number (TON) of more than 10,000 within 100 h. The integrated electrolysis with CO2 capture facilitates the thorough reduction of flue gas (ca. 13.0% of CO2) and first time of air (ca. 400 ppm of CO2 to 42.7 mL CH4 from 1.0 m3 air). The new self-healing strategy of molecular electrocatalyst with an enzymatic activation manner and anodic shifting of the applied potentials provided a departure from the existing electrochemical catalytic techniques.

7.
Poult Sci ; 103(10): 104069, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39067118

RESUMEN

A 2-dimensional (2D) egg-shape equation can be used to construct a 3D egg geometry based on the hypothesis that an egg is a solid of revolution, which helps to calculate egg volume and surface area. The parameters in the 2D egg-shape equation are potentially valuable for providing a clue to the ecology and evolution of avian eggs. In this study, the 5-parameter Preston equation (PE), the 4-parameter Troscianko equation (TE), and another 2 egg-shape equations, were compared in describing real 2D egg-shape data of 300 Gallus gallus domesticus eggs and additional 50 eggs that represented the variation in avian egg geometries. Adjusted root-mean-square error was used to quantify each equation's prediction error. Given that the 4 equations are nonlinear, relative curvature measures of nonlinearity were used to assess the extent of nonlinearity in each equation. PE was found to be the best among the 4 equations in terms of adjusted root-mean-square error and minimizing nonlinearity. The empirically determined egg volumes using a graduated cylinder were compared with the predicted egg volumes using the formula for a solid of revolution based on 2D predictions from the 4 egg-shape equations. There were negligible differences in the predicted egg volumes and surface areas among the 4 equations, indicating that these equations are all valid in calculating egg volume and surface area. In addition, we proposed a 5-parameter TE and found that it outperformed the above 4 equations in describing the 2D egg shape of G. gallus, but was less general than PE for other egg shapes. This work provides statistical evidence to show which equation is the best for describing the geometry of avian eggs and nondestructively calculating their volume and surface area, helping to classify poultry eggs into different grades according to the morphological characteristics of the eggs.

8.
Int J Biol Macromol ; 277(Pt 1): 134124, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39067733

RESUMEN

Chitin has garnered significant attention due to its renewable, biocompatibility and biodegradability, while its practical application seriously hindered as the functionality of chitin itself can no longer meet people's increasing requirements for materials. Here, an effective method is successfully built for high-performance chitin fibers fabrication through a multi-step strategy that involved chemical pre-crosslinking, followed by wet-twisting and wet-stretching techniques, combined with physical cross-linking. The as-prepared chitin fiber exhibited a smooth surface, adjustable diameter, and mechanical strong properties (144.6 MPa). More importantly, functional chitin fiber with magnetic or conductive abilities can be easily obtained by spraying Fe3O4 particles or Ag nanowire on the chemical pre-crosslinking chitin gel film before stretching and twisting. The doped functional inorganic particles exist in a continuous ribbon structure in the fiber reduced the decrease in material strength caused by uneven particles dispersion, resulting 88.4 % of stress and 91.6 % of strain retention. This work not only bestow invaluable insights into the fabrication of functional chitin fibers but also provide a novel approach to solve the problem of poor compatibility between organic and inorganic composite materials.

9.
Food Chem ; 460(Pt 1): 140469, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39029368

RESUMEN

Microorganisms, proteins, and lipids play crucial and intricate roles in the aroma generation of aquatic products. To explore the impact of the interaction between microorganisms and proteins on the volatile compounds (VOCs) in grouper, this study employed whey protein isolate (WPI) to inhibit lipid oxidation and reduce mutual interference. Changes in bacterial profiles, metabolites, and VOCs were detected. Eighteen key VOCs associated with the overall flavor of grouper were identified, and the potential relationships among microorganisms, proteins, and VOCs were explored using a correlation network. Five microorganisms (Vibrio, Vagococcus, Pseudomonas, Psychrobacter, and Shewanella) closely related to characteristic flavor compounds were identified. Additionally, 30 differential metabolites related to proteins and six metabolic pathways were screened. Therefore, this study unveils the potential interaction between microorganisms and proteins in flavor formation and provides new insights into the relationships among microorganisms, proteins, and VOCs.

10.
Biol Direct ; 19(1): 50, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918844

RESUMEN

BACKGROUND: Prostate cancer (PCa) is the second leading cause of tumor-related mortality in men. Metastasis from advanced tumors is the primary cause of death among patients. Identifying novel and effective biomarkers is essential for understanding the mechanisms of metastasis in PCa patients and developing successful interventions. METHODS: Using the GSE8511 and GSE27616 data sets, 21 metastasis-related genes were identified through the weighted gene co-expression network analysis (WGCNA) method. Subsequent functional analysis of these genes was conducted on the gene set cancer analysis (GSCA) website. Cluster analysis was utilized to explore the relationship between these genes, immune infiltration in PCa, and the efficacy of targeted drug IC50 scores. Machine learning algorithms were then employed to construct diagnostic and prognostic models, assessing their predictive accuracy. Additionally, multivariate COX regression analysis highlighted the significant role of POLD1 and examined its association with DNA methylation. Finally, molecular docking and immunohistochemistry experiments were carried out to assess the binding affinity of POLD1 to PCa drugs and its impact on PCa prognosis. RESULTS: The study identified 21 metastasis-related genes using the WGCNA method, which were found to be associated with DNA damage, hormone AR activation, and inhibition of the RTK pathway. Cluster analysis confirmed a significant correlation between these genes and PCa metastasis, particularly in the context of immunotherapy and targeted therapy drugs. A diagnostic model combining multiple machine learning algorithms showed strong predictive capabilities for PCa diagnosis, while a transfer model using the LASSO algorithm also yielded promising results. POLD1 emerged as a key prognostic gene among the metastatic genes, showing associations with DNA methylation. Molecular docking experiments supported its high affinity with PCa-targeted drugs. Immunohistochemistry experiments further validated that increased POLD1 expression is linked to poor prognosis in PCa patients. CONCLUSIONS: The developed diagnostic and metastasis models provide substantial value for patients with prostate cancer. The discovery of POLD1 as a novel biomarker related to prostate cancer metastasis offers a promising avenue for enhancing treatment of prostate cancer metastasis.


Asunto(s)
Inmunoterapia , Aprendizaje Automático , Metástasis de la Neoplasia , Neoplasias de la Próstata , Humanos , Masculino , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/tratamiento farmacológico , Biomarcadores de Tumor/genética , Pronóstico , Simulación del Acoplamiento Molecular , Regulación Neoplásica de la Expresión Génica
11.
Chem Sci ; 15(24): 9087-9095, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38903229

RESUMEN

Synthesis of conjugated compounds with unusual shape-persistent structures remains a challenge. Herein, utilizing thermodynamically reversible intermolecular Friedel-Crafts alkylation, a dynamic covalent chemistry (DCC) reaction, we facilely synthesized a figure-eight shaped macrocycle FEM and cage molecules CATPA/CACz. X-ray crystallographic analysis confirmed the chemical geometries of tetracation FEM4+(PF6 -)4 and hexacation CACz6+(SbF6 -)6. FEM and CATPA displayed higher photoluminescence quantum yield in solid states compared to that in solution, whereas CACz gave the reverse result. DFT calculations showed that fluorescence-related frontier molecular orbital profiles are mainly localized on their arms consisting of a p-quinodimethane (p-QDM) unit and two benzene rings of triphenylamine or carbazole. Owing to their space-confined structures, variable-temperature 1H NMR measurements showed that FEM, CATPA and FEM4+ have intramolecular restricted motion of phenyl rings on their chromophore arms. Accordingly, FEM and CATPA with flexible triphenylamine subunits displayed aggregation-induced emission behavior (AIE), whereas CACz with a rigid carbazole subunits structure showed no AIE behavior.

13.
J Vis Exp ; (207)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38829134

RESUMEN

H-type hypertension, which is a specific form of hypertension characterized by elevated plasma homocysteine (Hcy) levels, has become a major public health challenge worldwide. This study investigated the hypotensive effects and underlying mechanisms of Huotan Jiedu Tongluo decoction (HTJDTLD), a highly effective traditional Chinese medicine formula commonly used to treat vascular stenosis. Methionine was used to induce H-type hypertension in rats, and HTJDTLD was administered intragastrically. Then, the systolic and diastolic blood pressures of the caudal artery of rats were measured by noninvasive rat caudal manometry. Histological assessment of the aorta was performed by hematoxylin-eosin (HE) staining. Enzyme-linked immunosorbent assay (ELISA) was used to measure Hcy levels, and quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and western blotting were used to determine the mRNA and protein levels of Glucose regulatory protein 78 (GRP78), Tumor necrosis factor (TNF) receptor-associated factor 2 (TRAF2), c-Jun N-terminal kinases (JNK), and caspase-3. The results showed that HTJDTLD significantly lowered blood pressure, alleviated histopathological lesions, and decreased Hcy levels after methionine treatment. Moreover, HTJDTLD significantly inhibited the gene and protein expression of GRP78, JNK, TRAF2, and caspase 3, which are involved mainly in the endoplasmic reticulum (ER) stress-induced apoptosis pathway. Overall, the results indicated that HTJDTLD had effective antihypertensive effects in rats with H-type hypertension and revealed the antihypertensive mechanisms associated with inhibition of ER stress-induced apoptosis pathway activation.


Asunto(s)
Antihipertensivos , Medicamentos Herbarios Chinos , Hipertensión , Animales , Medicamentos Herbarios Chinos/farmacología , Ratas , Hipertensión/tratamiento farmacológico , Hipertensión/metabolismo , Antihipertensivos/farmacología , Masculino , Ratas Sprague-Dawley , Homocisteína/sangre
14.
Int J Biol Macromol ; 275(Pt 1): 133533, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38945339

RESUMEN

Firefighting clothing is an indispensable protective equipment for firefighters performing rescue activities under extreme heat and fire conditions. However, few bio-based thermal management materials that provide thermal comfort to firefighters in different operational scenarios have been reported. Herein, we present a novel strategy to prepare Janus-type aerogels based on sodium alginate biological macromolecules, consisting of a SiO2 nanoparticle layer and a microencapsulated paraffin@SiO2 phase-change composite layer. A passive radiative cooling and thermal energy storage was integrated into a functional dual-mode material system. Results show that Janus-type aerogel to cool down by 11.5 °C on a hot summer day. Meanwhile, paraffin@SiO2 has a high melting enthalpy of 127.5 J g-1 that effectively buffers temperature rise during the phase-change process. This Janus-type aerogel has ultra-low heat insulation (0.042 W/(m·K)), it can delay approximately 76.6 s to reach second-degree burn time for skin at a radiant heat exposure of 18.4 kW m-2. The work provides an innovative way to develop bio-based thermal management materials, which could enable multi-scenario thermal management for firefighting clothing.

15.
Inorg Chem ; 63(26): 11935-11943, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38869984

RESUMEN

The use of CO2 as a feedstock for the production of carbon-based fuels and value-added chemicals offers a promising route toward carbon neutrality. In this study, two Cu-based electrocatalysts, namely, Cu24/N-C and Cu2/N-C, are successfully prepared by thermal treatment of Cu24 metal-organic polyhedron-loaded zeolitic imidazolate framework-8 (ZIF-8) nanocrystals (Cu24/ZIF-8) and Cu2 dinuclear compound-loaded ZIF-8 nanocrystals (Cu2/ZIF-8), respectively. Extensive structural and compositional analyses were conducted to confirm the formation of Cu nanocluster-loaded N-doped porous carbon supports in both Cu24/N-C and Cu2/N-C and Cu nanoparticles encapsulated by graphitic carbons in Cu2/N-C as well. These two Cu-based electrocatalysts exhibited different behaviors in the electrochemical CO2 reduction reaction (CO2RR). The Cu24/N-C electrocatalyst showed high selectivity for CO production, while Cu2/N-C showed a preference for alcohol generation. The excellent stability of Cu2/N-C over a 30 h continuous electrochemical reduction further highlights its potential for practical applications. The difference in electrocatalytic performance observed in the two catalysts for CO2RR was attributed to distinct catalytic sites associated with Cu nanoclusters and nanoparticles. This research reveals the significance of their structures and compositions for the development of highly selective electrocatalysts for CO2 reduction.

16.
J Genet Genomics ; 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710286

RESUMEN

The virome is the most abundant and highly variable microbial consortium in the gut. Because of difficulties in isolating and culturing gut viruses and the lack of reference genomes, the virome has remained a relatively elusive aspect of the human microbiome. In recent years, studies on the virome have accumulated growing evidence showing that the virome is diet-modulated and widely involved in regulating health. Here, we review the responses of the gut virome to dietary intake and the potential health implications, presenting changes in the gut viral community and preferences of viral members to particular diets. We further discuss how viral-bacterial interactions and phage lifestyle shifts shape the gut microbiota. We also discuss the specific functions conferred by diet on the gut virome and bacterial community in the context of horizontal gene transfer, as well as the import of new viral members along with the diet. Collating these studies will expand our understanding of the dietary regulation of the gut virome and inspire dietary interventions and health maintenance strategies targeting the gut microbiota.

18.
Front Bioeng Biotechnol ; 12: 1397050, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38751864

RESUMEN

Introduction: In recent research, the expansion in the use of Mg alloys for biomedical applications has been approached by modifying their surfaces in conjunction with micro-arc oxidation (MAO) techniques which enhance their abrasion and corrosion resistance. Methods: In this study, combining laser texturing and MAO techniques to produce the dense ceramic coatings with microstructures. On the surface of the AZ31 Mg alloy, a micro-raised annulus array texture has been designed in order to increase the surface friction under liquid lubrication and to improve the operator's grip when holding the tool. For this work, the micro-morphology of the coatings was characterised, and the friction properties of the commonly used scalpel shank material 316 L, the untextured surface and the textured surface were comparatively analysed against disposable surgical gloves. Results and discussion: The results show that the Laser-MAO ceramic coating grows homogenous, the porosity decreases from 14.3% to 7.8%, and the morphology after friction indicates that the coating has good wear resistance. More specifically, the average coefficient of friction (COF) of the three types of gloves coated with Laser-MAO ceramic was higher than that of the 316 L and MAO ceramic coatings under the action of the annulus-integrated texture under the lubrication conditions of physiological saline and defatted sheep blood, which achieved the goal of increasing friction for the purpose of helping to prevent the problem of tool slippage from the hand.

19.
Orthop Res Rev ; 16: 125-136, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38766545

RESUMEN

Background: The relationship between gout and gut microbiota has attracted significant attention in current research. However, due to the diverse range of gut microbiota, the specific causal effect on gout remains unclear. This study utilizes Mendelian randomization (MR) to investigate the causal relationship between gut microbiota and gout, aiming to elucidate the underlying mechanism of microbiome-mediated gout and provide valuable guidance for clinical prevention and treatment. Materials and Methods: The largest genome-wide association study meta-analysis conducted by the MiBioGen Consortium (n=18,340) was utilized to perform a two-sample Mendelian randomization investigation on aggregate statistics of intestinal microbiota. Summary statistics for gout were utilized from the data released by EBI. Various methods, including inverse variance weighted, weighted median, weighted model, MR-Egger, and Simple-mode, were employed to assess the causal relationship between gut microbiota and gout. Reverse Mendelian randomization analysis revealed a causal association between bacteria and gout in forward Mendelian randomization analysis. Cochran's Q statistic was used to quantify instrumental variable heterogeneity. Results: The inverse variance weighted estimation revealed that Rikenellaceae exhibited a slight protective effect on gout, while the presence of Ruminococcaceae UCG_011 is associated with a marginal increase in the risk of gout. According to the reverse Mendelian Randomization results, no significant causal relationship between gout and gut microbiota was observed. No significant heterogeneity of instrumental variables or level pleiotropy was detected. Conclusion: Our MR analysis revealed a potential causal relationship between the development of gout and specific gut microbiota; however, the causal effect was not robust, and further research is warranted to elucidate its underlying mechanism in gout development. Considering the significant association between diet, gut microbiota, and gout, these findings undoubtedly shed light on the mechanisms of microbiota-mediated gout and provide new insights for translational research on managing and standardizing treatment for this condition.

20.
Int J Biol Macromol ; 269(Pt 1): 131748, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38670194

RESUMEN

Bio-based shape memory materials have attracted wide attention due to their biocompatibility, degradability and safety. However, designing and manufacturing wearable bio-based shape memory films with excellent flexibility and toughness is still a challenge. In this work, silk fibroin substrate with a ß-sheet structure was combined with a tri-block shape memory copolymer to prepare a transparent composited shape memory film. The silk fibroin-based film showed a dual-responsive shape memory function, which can respond to both temperature and water stimuli. This film has a sensitive water-responsive shape memory, which starts deforming after exposure to water for 3 s and fully recovers in 30 s. In addition, the composite film shows highly stretchable (>300 %) and could maintain its high tensile properties after 5 cycles of regeneration. The films also exhibited rapid degradation ability. This study provides new insights for the design of dual-responsive shape memory materials by combining biocompatible matrix and multi-block SMP to simultaneously enhance the mechanical properties, which can be used for intelligent packaging, medical supplies, soft actuators and wearable devices.


Asunto(s)
Materiales Biocompatibles , Fibroínas , Fibroínas/química , Materiales Biocompatibles/química , Materiales Inteligentes/química , Resistencia a la Tracción , Temperatura , Agua/química , Bombyx/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA