Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 254
Filtrar
1.
Heliyon ; 10(6): e28068, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38533059

RESUMEN

In response to the problem of excessive power consumption during the furrowing operation of orchard furrowing fertilizer machines, an optimization experiment of furrowing operation parameters for orchard furrowing fertilizer machine was conducted based on discrete element simulations. This research focused on the impact of furrowing device operation parameters on furrowing power consumption under full machine operating conditions. Firstly, a kinematics analysis of the soil granules during cutting was done. The mathematical model of soil granules through three movement processes of rising, detachment, and falling was established to determine the main factors affecting the power consumption of furrowing. Secondly, in assessing the furrowing power consumption, the stability coefficient of the furrowing depth, and the percentage of soil cover, alongside the key parameters of furrowing depth, forward propulsion velocity, and furrowing blade rotation speed, a comprehensive quadratic orthogonal rotation regression experiment was meticulously conducted. It was established that test metrics and test parameters regress. Finally, the test parameters were comprehensively optimized after analyzing each factor's impact on the test metrics. The orchard furrowing fertilizer machine's optimal operating parameters were determined, and the verification test was performed. According to the field test findings, the forward propulsion velocity was 785 m/h, and the furrowing blade rotation speed was 190 r/min when the furrowing depth was 275 mm. At this point, the furrowing power consumption was 2.39 kW, the soil cover percentage was 69.06%, and the furrowing depth stability coefficient was 95.08%. These results were in line with the requirements of orchard furrowing operation. The findings of the study can be utilized as a guide for structural changes to orchard furrowing equipment and the management of furrowing operation parameters.

2.
Materials (Basel) ; 17(6)2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38541439

RESUMEN

As the lightest structural metal material, magnesium alloys possess good casting properties, high electrical and thermal conductivity, high electromagnetic shielding, and excellent damping properties. With the increasing demand for lightweight, high-strength, and high-damping structural materials in aviation, automobiles, rail transit, and other industries with serious vibration and noise, damping magnesium alloy materials are becoming one of the important development directions of magnesium alloys. A comprehensive review of the progress in this field is conducive to the development of damping magnesium alloys. This review not only looks back on the traditional damping magnesium alloys represented by Mg-Zr alloys, Mg-Cu-Mn alloys, etc. but also introduces the new damping magnesium materials, such as magnesium matrix composites and porous magnesium. But up to now, there have still been some problems in the research of damping magnesium materials. The effect of spiral dislocation on damping is still unknown and needs to be studied; the contradiction between damping performance and mechanical properties still lacks a good balance method. In the future, the introduction of more diversified damping regulating methods, such as adding other elements and reinforcements, optimizing the manufacturing method of damping magnesium alloy, etc., to solve these issues, will be the development trend of damping magnesium materials.

3.
J Biol Chem ; 300(3): 105704, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38309506

RESUMEN

Selective gene expression in cells in physiological or pathological conditions is important for the growth and development of organisms. Acetylation of histone H4 at K16 (H4K16ac) catalyzed by histone acetyltransferase 8 (KAT8) is known to promote gene transcription; however, the regulation of KAT8 transcription and the mechanism by which KAT8 acetylates H4K16ac to promote specific gene expression are unclear. Using the lepidopteran insect Helicoverpa armigera as a model, we reveal that the transcription factor FOXO promotes KAT8 expression and recruits KAT8 to the promoter region of autophagy-related gene 8 (Atg8) to increase H4 acetylation at that location, enabling Atg8 transcription under the steroid hormone 20-hydroxyecdysone (20E) regulation. H4K16ac levels are increased in the midgut during metamorphosis, which is consistent with the expression profiles of KAT8 and ATG8. Knockdown of Kat8 using RNA interference results in delayed pupation and repression of midgut autophagy and decreases H4K16ac levels. Overexpression of KAT8-GFP promotes autophagy and increases H4K16ac levels. FOXO, KAT8, and H4K16ac colocalized at the FOXO-binding region to promote Atg8 transcription under 20E regulation. Acetylated FOXO at K180 and K183 catalyzed by KAT8 promotes gene transcription for autophagy. 20E via FOXO promotes Kat8 transcription. Knockdown or overexpression of FOXO appeared to give similar results as knockdown or overexpression of KAT8. Therefore, FOXO upregulates KAT8 expression and recruits KAT8 to the promoter region of Atg8, where the KAT8 induces H4 acetylation to promote Atg8 transcription for autophagy under 20E regulation. This study reveals the mechanism that KAT8 promotes transcription of a specific gene.


Asunto(s)
Autofagia , Ecdisterona , Helicoverpa armigera , Histona Acetiltransferasas , Histonas , Procesamiento Proteico-Postraduccional , Acetilación , Autofagia/genética , Ecdisterona/metabolismo , Regiones Promotoras Genéticas , Helicoverpa armigera/genética , Helicoverpa armigera/metabolismo , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Histonas/metabolismo
4.
Plant Sci ; 342: 112035, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38367822

RESUMEN

The post-translational modification (PTM) of proteins by ubiquitination modulates many physiological processes in plants. As the major protein degradation pathway in plants, the ubiquitin-proteasome system (UPS) is considered a promising target for improving crop tolerance drought, high salinity, extreme temperatures, and other abiotic stressors. The UPS also participates in abiotic stress-related abscisic acid (ABA) signaling. E3 ligases are core components of the UPS-mediated modification process due to their substrate specificity. In this review, we focus on the abiotic stress-associated regulatory mechanisms and functions of different UPS components, emphasizing the participation of E3 ubiquitin ligases. We also summarize and discuss UPS-mediated modulation of ABA signaling. In particular, we focus our review on recent research into the UPS-mediated modulation of the abiotic stress response in major crop plants. We propose that altering the ubiquitination site of the substrate or the substrate-specificity of E3 ligase using genome editing technology such as CRISPR/Cas9 may improve the resistance of crop plants to adverse environmental conditions. Such a strategy will require continued research into the role of the UPS in mediating the abiotic stress response in plants.


Asunto(s)
Resiliencia Psicológica , Ubiquitina , Ubiquitina/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Plantas/genética , Plantas/metabolismo , Ubiquitinación , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Estrés Fisiológico/genética , Ácido Abscísico/metabolismo , Regulación de la Expresión Génica de las Plantas
5.
Int J Biol Macromol ; 256(Pt 1): 128333, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38007022

RESUMEN

Viruses have developed superior strategies to escape host defenses or exploit host components and enable their infection. The forkhead box transcription factor O family proteins (FOXOs) are reportedly utilized by human cytomegalovirus during their reactivation in mammals, but if FOXOs are exploited by viruses during their infection remains unclear. In the present study, we found that the FOXO of kuruma shrimp (Marsupenaeus japonicus) was hijacked by white spot syndrome virus (WSSV) during infection. Mechanistically, the expression of leucine carboxyl methyl transferase 1 (LCMT1) was up-regulated during the early stages of WSSV infection, which activated the protein phosphatase 2A (PP2A) by methylation, leading to dephosphorylation of FOXO and translocation into the nucleus. The FOXO directly promoted transcription of the immediate early gene, wsv079 of WSSV, which functioned as a transcriptional activator to initiate the expression of viral early and late genes. Thus, WSSV utilized the host LCMT1-PP2A-FOXO axis to promote its replication during the early infection stage. We also found that, during the late stages of WSSV infection, the envelope protein of WSSV (VP26) promoted PP2A activity by directly binding to FOXO and the regulatory subunit of PP2A (B55), which further facilitated FOXO dephosphorylation and WSSV replication via the VP26-PP2A-FOXO axis in shrimp. Overall, this study reveals novel viral strategies by which WSSV hijacks host LCMT1-PP2A-FOXO or VP26-PP2A-FOXO axes to promote its propagation, and provides clinical targets for WSSV control in shrimp aquaculture.


Asunto(s)
Penaeidae , Virus del Síndrome de la Mancha Blanca 1 , Animales , Humanos , Virus del Síndrome de la Mancha Blanca 1/genética , Proteína Fosfatasa 2 , Factores de Transcripción , Mamíferos
6.
Ann Vasc Surg ; 99: 233-241, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37802137

RESUMEN

BACKGROUND: With favorable results of thoracic endovascular aortic repair (TEVAR) in patients with uncomplicated acute type B intramural hematoma (uTBIMH), TEVAR is increasingly utilized in the management of patients with uTBIMH. However, optimal timing for intervention has not been decided. This study aimed to compare the efficacy of acute and delayed TEVAR in patients with uTBIMH. METHODS: We included patients with uTBIMH who underwent TEVAR between October 2014 and December 2021. The participants were divided into the acute TEVAR (aTEVAR) and delayed TEVAR (dTEVAR) groups. We analyzed the total aortic diameter (TAD)/true lumen diameter (TLD) ratio on computed tomography angiography (CTA) and aortic-related adverse events and all-cause mortality (AREM). RESULTS: We included 34 individuals with uTBIMH, among which 20 underwent aTEVAR and 14 underwent dTEVAR. We observed no significant differences in baseline characteristics between both groups. However, compared with the aTEVAR group, better aortic remodeling was achieved in the dTEVAR group before discharge (1.32 ± 0.11 vs. 1.21 ± 0.09, P = 0.005) and at the 1-year follow-up (1.18 ± 0.09 vs. 1.10 ± 0.04, P = 0.034). Although the 30-day and 1-year follow-up outcomes of AREM were not significantly different, the Kaplan-Meier analysis showed that AREM incidence in the dTEVAR group was significantly lower than that in the aTEVAR group (85.7% for dTEVAR vs. 65.0% for aTEVAR, log-rank P = 0.20). Moreover, subgroup analysis revealed a significant difference in the TAD/TLD ratio between the aTEVAR and dTEVAR groups in individuals without a focal intimal disruption (1.33 ± 0.11 vs. 1.17 ± 0.09, P = 0.008). CONCLUSIONS: For individuals with uTBIMH, delaying TEVAR by >7 days improved aortic remodeling and lowered the incidence of early AREM. Additionally, the absence of focal intimal disruption on preoperative CTA supports delayed intervention.


Asunto(s)
Aneurisma de la Aorta Torácica , Disección Aórtica , Implantación de Prótesis Vascular , Procedimientos Endovasculares , Humanos , Aneurisma de la Aorta Torácica/diagnóstico por imagen , Aneurisma de la Aorta Torácica/cirugía , Aneurisma de la Aorta Torácica/complicaciones , Implantación de Prótesis Vascular/efectos adversos , Resultado del Tratamiento , Factores de Tiempo , Aorta Torácica/diagnóstico por imagen , Aorta Torácica/cirugía , Hematoma/diagnóstico por imagen , Hematoma/cirugía , Hematoma/etiología , Estudios Retrospectivos , Factores de Riesgo
8.
Materials (Basel) ; 16(23)2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38068060

RESUMEN

Magnesium alloys with high damping, high specific strength and low density have attracted great attention in recent years. However, the application of magnesium alloys is limited by the balance between their mechanical and damping properties. The strength and plasticity of magnesium alloys with high damping performance often cannot meet the industrial requirements. Understanding the damping mechanism of magnesium alloys is significant for developing new materials with high damping and mechanical properties. In this paper, the damping mechanisms and internal factors of the damping properties of magnesium alloys are comprehensively reviewed. Some damping mechanisms have been studied by many scholars, and it has been found that they can be used to explain damping performance. Among existing damping mechanisms, the G-L dislocation theory, twin damping mechanism and interface damping mechanism are considered common. In addition, some specific long-period stacking ordered (LPSO) phases' crystal structures are conducive to dislocation movement, which is good for improving damping performance. Usually, the damping properties of magnesium alloys are affected by some internal factors directly, such as dislocation density, solute atoms, grain texture and boundaries, etc. These internal factors affect damping performance by influencing the dissipation of energy within the crystal. Scholars are working to find novel damping mechanisms and suitable solute atoms that can improve damping performance. It is important to understand the main damping mechanisms and the internal factors for guiding the development of novel high-damping magnesium alloys.

9.
Front Plant Sci ; 14: 1271933, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38093993

RESUMEN

Introduction: At present, machine learning and image processing technology are widely used in plant disease diagnosis. In order to address the challenges of subjectivity, cost, and timeliness associated with traditional methods of diagnosing potassium deficiency in apple tree leaves. Methods: The study proposes a model that utilizes image processing technology and machine learning techniques to enhance the accuracy of detection during each growth period. Leaf images were collected at different growth stages and processed through denoising and segmentation. Color and shape features of the leaves were extracted and a multiple regression analysis model was used to screen for key features. Linear discriminant analysis was then employed to optimize the data and obtain the optimal shape and color feature factors of apple tree leaves during each growth period. Various machine-learning methods, including SVM, DT, and KNN, were used for the diagnosis of potassium deficiency. Results: The MLR-LDA-SVM model was found to be the optimal model based on comprehensive evaluation indicators. Field experiments were conducted to verify the accuracy of the diagnostic model, achieving high diagnostic accuracy during different growth periods. Discussion: The model can accurately diagnose whether potassium deficiency exists in apple tree leaves during each growth period. This provides theoretical guidance for intelligent and precise water and fertilizer management in orchards.

10.
Cells ; 12(20)2023 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-37887272

RESUMEN

Traumatic brain injury usually triggers glial scar formation, neuroinflammation, and neurodegeneration. However, the molecular mechanisms underlying these pathological features are largely unknown. Using a mouse model of hippocampal stab injury (HSI), we observed that miR-331, a brain-enriched microRNA, was significantly downregulated in the early stage (0-7 days) of HSI. Intranasal administration of agomir-331, an upgraded product of miR-331 mimics, suppressed reactive gliosis and neuronal apoptosis and improved cognitive function in HSI mice. Finally, we identified IL-1ß as a direct downstream target of miR-331, and agomir-331 treatment significantly reduced IL-1ß levels in the hippocampus after acute injury. Our findings highlight, for the first time, agomir-331 as a pivotal neuroprotective agent for early rehabilitation of HSI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , MicroARNs , Humanos , Gliosis , Enfermedades Neuroinflamatorias , Inflamación/patología , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/patología , MicroARNs/genética
11.
Materials (Basel) ; 16(18)2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37763381

RESUMEN

The large differential-thermal extrusion (LDTE) process, a novel approach for efficiently fabricating a high-strength Mg-10.3Gd-4.4Y-0.9Zn-0.7Mn (wt.%) alloy, is introduced in this work. Unlike typical isothermal extrusion processes, where the ingot and die temperatures are kept the same, LDTE involves significantly higher ingot temperatures (~120 °C) compared to the die temperature. For high-strength Mg-RE alloys, the maximum isothermal extrusion ram speed is normally limited to 1 mm/s. This research uses the LDTE process to significantly increase the ram speed to 2.0 mm/s. The LPTE-processed alloy possesses a phase composition that is similar to that of isothermal extruded alloys, including α-Mg, 14H-type long-period stacking ordered (LPSO) and ß-Mg5(Gd, Y) phases. The weakly preferentially oriented α-Mg grains in the LDTE-processed alloy have <101¯0>Mg//ED fibrous and <0001>Mg//ED anomalous textures as their two main constituents. After isothermal aging, high quantitative densities of prismatic ß' and basal γ' precipitates are produced, which have the beneficial effect of precipitation hardening. With a yield tensile strength of 344 MPa, an ultimate tensile strength of 488 MPa, and an elongation of 9.7%, the alloy produced by the LDTE process exhibits an exceptional strength-ductility balance, further demonstrating the potential of this method for efficiently producing high-strength Mg alloys.

12.
Iran J Public Health ; 52(7): 1334-1345, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37593512

RESUMEN

Background: There are many kinds of medicinal animal resources, which are an important part of traditional Chinese medicine resources (TCM). However, the use of medicinal animals in TCM, especially wild animals, has become a sensitive problem at home and abroad. Systematic analysis on the research status and direction of medical animals in the last 10 years which for promoting the sustainable development of Chinese medicine. Methods: PubMed, Web of Science, Embase, CINAHL, CNKI, VIP database and WanFang Database were selected, and SPSS 25.0 software was used to analyze annual publications, journals, global distribution, authors, coauthors and co-authors rate, author institutions and high-frequency keywords. Results: Chinese Journal of modern Chinese medicine occupies the majority articles with a high co-authorship rate, but low impact factors. The development of medical animals around the world is not balanced. The top three countries are China, United Kingdom and United States. However, these countries have less exchanges and cooperation with each other. The Institute of TCM of Chinese Academy owns the most research achievements. At present, the hot spots involve the identification and quality of medical animals, applied basic research. Conclusion: The identification, quality and applied basic research of medical animals are still worthy of increasing research investment. In addition, it is necessary to strengthen exchanges and international cooperation among different countries in TCM, and promote the high-quality development in medical animals.

13.
Plants (Basel) ; 12(15)2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37570942

RESUMEN

Salinization is a global agricultural problem with many negative effects on crops, including delaying germination, inhibiting growth, and reducing crop yield and quality. This study compared the salt tolerance of 20 soybean varieties at the germination stage to identify soybean germplasm with a high salt tolerance. Germination tests were conducted in Petri dishes containing 0, 50, 100, 150, and 200 mmol L-1 NaCl. Each Petri dish contained 20 soybean seeds, and each treatment was repeated five times. The indicators of germination potential, germination rate, hypocotyl length, and radicle length were measured. The salt tolerance of 20 soybean varieties was graded, and the theoretical identification concentration was determined by cluster analysis, the membership function method, one-way analysis of variance, and quadratic equation analysis. The relative germination rate, relative germination potential, relative root length, and relative bud length of the 20 soybean germplasms decreased when the salt concentration was >50 mmol L-1, compared with that of the Ctrl. The half-lethal salt concentration of soybean was 164.50 mmol L-1, and the coefficient of variation was 18.90%. Twenty soybean varieties were divided into three salt tolerance levels following cluster analysis: Dongnong 254, Heike 123, Heike 58, Heihe 49, and Heike 68 were salt-tolerant varieties, and Xihai 2, Suinong 94, Kenfeng 16, and Heinong 84 were salt-sensitive varieties, respectively. This study identified suitable soybean varieties for planting in areas severely affected by salt and provided materials for screening and extracting parents or genes to breed salt-tolerant varieties in areas where direct planting is impossible. It assists crop breeding at the molecular level to cope with increasingly serious salt stress.

14.
Proc Natl Acad Sci U S A ; 120(24): e2216574120, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37276415

RESUMEN

The immune deficiency (IMD) pathway is critical for elevating host immunity in both insects and crustaceans. The IMD pathway activation in insects is mediated by peptidoglycan recognition proteins, which do not exist in crustaceans, suggesting a previously unidentified mechanism involved in crustacean IMD pathway activation. In this study, we identified a Marsupenaeus japonicus B class type III scavenger receptor, SRB2, as a receptor for activation of the IMD pathway. SRB2 is up-regulated upon bacterial challenge, while its depletion exacerbates bacterial proliferation and shrimp mortality via abolishing the expression of antimicrobial peptides. The extracellular domain of SRB2 recognizes bacterial lipopolysaccharide (LPS), while its C-terminal intracellular region containing a cryptic RHIM-like motif interacts with IMD, and activates the pathway by promoting nuclear translocation of RELISH. Overexpressing shrimp SRB2 in Drosophila melanogaster S2 cells potentiates LPS-induced IMD pathway activation and diptericin expression. These results unveil a previously unrecognized SRB2-IMD axis responsible for antimicrobial peptide induction and restriction of bacterial infection in crustaceans and provide evidence of biological diversity of IMD signaling in animals. A better understanding of the innate immunity of crustaceans will permit the optimization of prevention and treatment strategies against the arising shrimp diseases.


Asunto(s)
Crustáceos , Animales , Crustáceos/genética , Crustáceos/inmunología , Crustáceos/metabolismo , Crustáceos/microbiología , Drosophila melanogaster , Lipopolisacáridos , Receptores de Reconocimiento de Patrones/genética , Receptores de Reconocimiento de Patrones/metabolismo , Regulación hacia Arriba , Vibrio , Transducción de Señal , Humanos
15.
Cell Rep ; 42(6): 112644, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37310862

RESUMEN

Amino acid metabolism is regulated according to nutrient conditions; however, the mechanism is not fully understood. Using the holometabolous insect cotton bollworm (Helicoverpa armigera) as a model, we report that hemolymph metabolites are greatly changed from the feeding larvae to the wandering larvae and to pupae. Arginine, alpha-ketoglutarate (α-KG), and glutamate (Glu) are identified as marker metabolites of feeding larvae, wandering larvae, and pupae, respectively. Arginine level is decreased by 20-hydroxyecdysone (20E) regulation via repression of argininosuccinate synthetase (Ass) expression and upregulation of arginase (Arg) expression during metamorphosis. α-KG is transformed from Glu by glutamate dehydrogenase (GDH) in larval midgut, which is repressed by 20E. The α-KG is then transformed to Glu by GDH-like in pupal fat body, which is upregulated by 20E. Thus, 20E reprogrammed amino acid metabolism during metamorphosis by regulating gene expression in a stage- and tissue-specific manner to support insect metamorphic development.


Asunto(s)
Ecdisterona , Mariposas Nocturnas , Animales , Ecdisterona/farmacología , Ecdisterona/metabolismo , Larva/metabolismo , Metamorfosis Biológica , Aminoácidos/metabolismo , Proteínas de Insectos/metabolismo
16.
BMC Biol ; 21(1): 119, 2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-37226192

RESUMEN

BACKGROUND: The regulation of glycolysis and autophagy during feeding and metamorphosis in holometabolous insects is a complex process that is not yet fully understood. Insulin regulates glycolysis during the larval feeding stage, allowing the insects to grow and live. However, during metamorphosis, 20-hydroxyecdysone (20E) takes over and regulates programmed cell death (PCD) in larval tissues, leading to degradation and ultimately enabling the insects to transform into adults. The precise mechanism through which these seemingly contradictory processes are coordinated remains unclear and requires further research. To understand the coordination of glycolysis and autophagy during development, we focused our investigation on the role of 20E and insulin in the regulation of phosphoglycerate kinase 1 (PGK1). We examined the glycolytic substrates and products, PGK1 glycolytic activity, and the posttranslational modification of PGK1 during the development of Helicoverpa armigera from feeding to metamorphosis. RESULTS: Our findings suggest that the coordination of glycolysis and autophagy during holometabolous insect development is regulated by a balance between 20E and insulin signaling pathways. Glycolysis and PGK1 expression levels were decreased during metamorphosis under the regulation of 20E. Insulin promoted glycolysis and cell proliferation via PGK1 phosphorylation, while 20E dephosphorylated PGK1 via phosphatase and tensin homolog (PTEN) to repress glycolysis. The phosphorylation of PGK1 at Y194 by insulin and its subsequent promotion of glycolysis and cell proliferation were important for tissue growth and differentiation during the feeding stage. However, during metamorphosis, the acetylation of PGK1 by 20E was key in initiating PCD. Knockdown of phosphorylated PGK1 by RNA interference (RNAi) at the feeding stage led to glycolysis suppression and small pupae. Insulin via histone deacetylase 3 (HDAC3) deacetylated PGK1, whereas 20E via acetyltransferase arrest-defective protein 1 (ARD1) induced PGK1 acetylation at K386 to stimulate PCD. Knockdown of acetylated-PGK1 by RNAi at the metamorphic stages led to PCD repression and delayed pupation. CONCLUSIONS: The posttranslational modification of PGK1 determines its functions in cell proliferation and PCD. Insulin and 20E counteractively regulate PGK1 phosphorylation and acetylation to give it dual functions in cell proliferation and PCD.


Asunto(s)
Ecdisterona , Insulina , Animales , Ecdisterona/farmacología , Fosfoglicerato Quinasa/genética , Fosforilación , Apoptosis , Larva
17.
Front Nutr ; 10: 1145841, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37063323

RESUMEN

Jasmine flower residue (JFR) is a by-product retained in the production process of jasmine tea and can be used as an unconventional feed due to its rich nutrient value. This study aimed to evaluate the effects of the addition of JFR to the diet of goats on their meat quality and flavor. Twenty-four castrated Nubian male goats were randomly divided into two groups and fed a mixed diet containing 10% JFR (JFR, n = 12) or a conventional diet (CON, n = 12) for 45 days. Meat quality and flavor were measured at the end of the treatment. The addition of JFR to the diet could reduce the shear force of the longissimus dorsi muscle, as well as, the cross-sectional area and diameter of muscle fibers, indicating that the addition of JFR improved meat quality. JFR also increased the content of glutamic acid and ω-3 polyunsaturated fatty acid (C18:3n3 and C20:5N3) and reduced the content of C24:1 and saturated fatty acid (C20:0 and C22:0). In addition, the use of JFR increased the content of acetaldehyde and hexanal in the meat. Furthermore, JFR introduced new volatile components in the meat. The umami, saltiness, and richness of the meat also improved. In conclusion, the addition of jasmine flower residue to the diet can improve the meat quality and flavor of goat.

18.
Commun Biol ; 6(1): 361, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-37012372

RESUMEN

AMPK plays significant roles in the modulation of metabolic reprogramming and viral infection. However, the detailed mechanism by which AMPK affects viral infection is unclear. The present study aims to determine how AMPK influences white spot syndrome virus (WSSV) infection in shrimp (Marsupenaeus japonicus). Here, we find that AMPK expression and phosphorylation are significantly upregulated in WSSV-infected shrimp. WSSV replication decreases remarkably after knockdown of Ampkα and the shrimp survival rate of AMPK-inhibitor injection shrimp increases significantly, suggesting that AMPK is beneficial for WSSV proliferation. Mechanistically, WSSV infection increases intracellular Ca2+ level, and activates CaMKK, which result in AMPK phosphorylation and partial nuclear translocation. AMPK directly activates mTORC2-AKT signaling pathway to phosphorylate key enzymes of glycolysis in the cytosol and promotes expression of Hif1α to mediate transcription of key glycolytic enzyme genes, both of which lead to increased glycolysis to provide energy for WSSV proliferation. Our findings reveal a novel mechanism by which WSSV exploits the host CaMKK-AMPK-mTORC2 pathway for its proliferation, and suggest that AMPK might be a target for WSSV control in shrimp aquaculture.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Glucólisis , Diana Mecanicista del Complejo 2 de la Rapamicina , Penaeidae , Replicación Viral , Virus del Síndrome de la Mancha Blanca 1 , Aerobiosis , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Penaeidae/genética , Penaeidae/metabolismo , Fosforilación , Transducción de Señal , Virus del Síndrome de la Mancha Blanca 1/fisiología , Técnicas de Silenciamiento del Gen
19.
J Mol Model ; 29(3): 73, 2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36820991

RESUMEN

BACKGROUND: Chlorine substitution has been considered as one of the key steps of polychlorinated dibenzodioxin/furan (PCDD/Fs) generation. The introduction of oxygen carriers (OCs), especially in chemical looping combustion (CLC), provides the platform of directed regulation for the chlorine substitution process. METHODS: Density functional theory (DFT) calculations with code VASP 5.4 were employed to investigate the free energy of PCDD/Fs adsorption on different surfaces. 12378-PCDD, which is the product of a one-step chlorine substitution for toxic 2378-PCDD, has been selected as the calculation case, and the regulation mechanisms on the inter-isomeric conversion of 12378-PCDD were identified by calculating the energy barrier and action angle. RESULTS: It was found that the chlorine substitution of 12378-PCDD, particularly in 4# position, 9# position, and 6# position, emerged a tendency to increase the difficulty in turn, which conforms to the principle of distal preference. Besides, the influence from CaO adsorption on the crystalline surface of the iron-based oxygen carrier (OC) has been analyzed and it was verified that CaO adsorption can significantly increase the energy barrier for the chlorine substitution of 12378-PCDD. Meanwhile, the action angle was proposed to evaluate the parameters of adsorption process, and the adsorption of CaO can not only change the action angle between the 12378-PCDD molecule and the lattice surface, but also can modulate the energy barrier order of chlorine substitution among PCDD isomers. In addition, the loading component modulation was carried out to further confirm the feasibility of modulating the chloride substitution pathway, which proved the influence degree of loading component. And accordingly, the stretching analysis of the inactive component provides a theoretical basis for the subsequent study of the directional regulation of the PCDDs isomer generation pathway. Finally, the chlorine substitution rules and directed regulation mechanisms of PCDD/Fs isomers were obtained, which provides a modification direction for the structural components of OCs.

20.
Brief Bioinform ; 24(2)2023 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-36719094

RESUMEN

With the emergence of high-throughput technologies, computational screening based on gene expression profiles has become one of the most effective methods for drug discovery. More importantly, profile-based approaches remarkably enhance novel drug-disease pair discovery without relying on drug- or disease-specific prior knowledge, which has been widely used in modern medicine. However, profile-based systematic screening of active ingredients of traditional Chinese medicine (TCM) has been scarcely performed due to inadequate pharmacotranscriptomic data. Here, we develop the largest-to-date online TCM active ingredients-based pharmacotranscriptomic platform integrated traditional Chinese medicine (ITCM) for the effective screening of active ingredients. First, we performed unified high-throughput experiments and constructed the largest data repository of 496 representative active ingredients, which was five times larger than the previous one built by our team. The transcriptome-based multi-scale analysis was also performed to elucidate their mechanism. Then, we developed six state-of-art signature search methods to screen active ingredients and determine the optimal signature size for all methods. Moreover, we integrated them into a screening strategy, TCM-Query, to identify the potential active ingredients for the special disease. In addition, we also comprehensively collected the TCM-related resource by literature mining. Finally, we applied ITCM to an active ingredient bavachinin, and two diseases, including prostate cancer and COVID-19, to demonstrate the power of drug discovery. ITCM was aimed to comprehensively explore the active ingredients of TCM and boost studies of pharmacological action and drug discovery. ITCM is available at http://itcm.biotcm.net.


Asunto(s)
COVID-19 , Medicamentos Herbarios Chinos , Humanos , Medicina Tradicional China , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Perfilación de la Expresión Génica , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...