Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Med ; 17(4): 758-767, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37000349

RESUMEN

With the recent ongoing autumn/winter 2022 COVID-19 wave and the adjustment of public health control measures, there have been widespread SARS-CoV-2 infections in Chinese mainland. Here we have analyzed 369 viral genomes from recently diagnosed COVID-19 patients in Shanghai, identifying a large number of sublineages of the SARS-CoV-2 Omicron family. Phylogenetic analysis, coupled with contact history tracing, revealed simultaneous community transmission of two Omicron sublineages dominating the infections in some areas of China (BA.5.2 mainly in Guangzhou and Shanghai, and BF.7 mainly in Beijing) and two highly infectious sublineages recently imported from abroad (XBB and BQ.1). Publicly available data from August 31 to November 29, 2022 indicated an overall severe/critical case rate of 0.035% nationwide, while analysis of 5706 symptomatic patients treated at the Shanghai Public Health Center between September 1 and December 26, 2022 showed that 20 cases (0.35%) without comorbidities progressed into severe/critical conditions and 153 cases (2.68%) with COVID-19-exacerbated comorbidities progressed into severe/critical conditions. These observations shall alert healthcare providers to place more resources for the treatment of severe/critical cases. Furthermore, mathematical modeling predicts this autumn/winter wave might pass through major cities in China by the end of the year, whereas some middle and western provinces and rural areas would be hit by the upcoming infection wave in mid-to-late January 2023, and the duration and magnitude of upcoming outbreak could be dramatically enhanced by the extensive travels during the Spring Festival (January 21, 2023). Altogether, these preliminary data highlight the needs to allocate resources to early diagnosis and effective treatment of severe cases and the protection of vulnerable population, especially in the rural areas, to ensure the country's smooth exit from the ongoing pandemic and accelerate socio-economic recovery.

2.
Nat Commun ; 13(1): 7207, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36418292

RESUMEN

Osteosarcoma (OS) is a primary malignant bone tumor that most commonly affects children, adolescents, and young adults. Here, we comprehensively analyze genomic, epigenomic and transcriptomic data from 121 OS patients. Somatic mutations are diverse within the cohort, and only TP53 is significantly mutated. Through unsupervised integrative clustering of the multi-omics data, we classify OS into four subtypes with distinct molecular features and clinical prognosis: (1) Immune activated (S-IA), (2) Immune suppressed (S-IS), (3) Homologous recombination deficiency dominant (S-HRD), and (4) MYC driven (S-MD). MYC amplification with HR proficiency tumors is identified with a high oxidative phosphorylation signature resulting in resistance to neoadjuvant chemotherapy. Potential therapeutic targets are identified for each subtype, including platinum-based chemotherapy, immune checkpoint inhibitors, anti-VEGFR, anti-MYC and PARPi-based synthetic lethal strategies. Our comprehensive integrated characterization provides a valuable resource that deepens our understanding of the disease, and may guide future clinical strategies for the precision treatment of OS.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Adulto Joven , Adolescente , Niño , Humanos , Osteosarcoma/genética , Osteosarcoma/terapia , Genómica/métodos , Transcriptoma , Platino (Metal) , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/genética
3.
RSC Adv ; 12(13): 7883-7891, 2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35424728

RESUMEN

In this paper, Mn2+/Ln3+-doped hexagonal phase (ß-) NaGdF4:Ce (Ln = Tb, Dy, Eu) nanomaterials with subtly tuned multicolor output have been successfully synthesized by a typical simple hydrothermal method using polyethylene glycol (PEG) as a surface modifying agent. The crystal structures, morphology, luminescence performance, and energy transfer (ET) mechanism of the synthesized NaGdF4 nanoparticles (NPs) were investigated in detail. It is found that due to the effective ET between Ce3+ and Mn2+/Ln3+, the multicolor down-conversion (DC) emission phosphors can yield three major emission bands in the visible region including blue, green and red. Moreover, the white emission could be realized through manipulating the doping ratio of Ce3+, Dy3+ and Eu3+ with suitable concentration in ß-NaGdF4 NPs through effective resonance-type ET under the irradiation of 273 nm. And the corresponding CIE1931 coordinates were calculated to be (0.31, 0.32), which is near the normative white emission (0.33, 0.33). All the multicolor tuning and white emission results evidently suggest that the present Ce3+ and Mn2+/Ln3+-doped ß-NaGdF4 NPs are feasible phosphors for potential applications in white-light emitters, full-color displays and photonic devices.

4.
Adv Sci (Weinh) ; 8(19): e2101031, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34365741

RESUMEN

IRF8 is a key regulator of innate immunity receptor signaling and plays diverse functions in the development of hematopoietic cells. The effects of IRF8 on hematopoietic stem cells (HSCs) are still unknown. Here, it is demonstrated that IRF8 deficiency results in a decreased number of long-term HSCs (LT-HSCs) in mice. However, the repopulation capacity of individual HSCs is significantly increased. Transcriptomic analysis shows that IFN-γ and IFN-α signaling is downregulated in IRF8-deficient HSCs, while their response to proinflammatory cytokines is unchanged ex vivo. Further tests show that Irf8-/- HSCs can not respond to CpG, an agonist of Toll-like receptor 9 (TLR9) in mice, while long-term CpG stimulation increases wild-type HSC abundance and decreases their bone marrow colony-forming capacity. Mechanistically, as the primary producer of proinflammatory cytokines in response to CpG stimulation, dendritic cells has a blocked TLR9 signaling due to developmental defect in Irf8-/- mice. Macrophages remain functionally intact but severely reduce in Irf8-/- mice. In NK cells, IRF8 directly regulates the expression of Tlr9 and its deficiency leads to no increased IFNγ production upon CpG stimulation. These results indicate that IRF8 regulates HSCs, at least in part, through controlling TLR9 signaling in diverse innate immune cells.


Asunto(s)
Células Madre Hematopoyéticas/metabolismo , Inmunidad Innata/inmunología , Factores Reguladores del Interferón/inmunología , Factores Reguladores del Interferón/metabolismo , Receptor Toll-Like 9/inmunología , Receptor Toll-Like 9/metabolismo , Animales , Perfilación de la Expresión Génica/métodos , Células Madre Hematopoyéticas/inmunología , Inmunidad Innata/genética , Factores Reguladores del Interferón/genética , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Transducción de Señal/genética , Transducción de Señal/inmunología , Receptor Toll-Like 9/genética
5.
Front Oncol ; 11: 642134, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34168981

RESUMEN

Osteosarcoma is the most common primary malignant bone tumor, and there are few ideal clinically available drugs. The bromodomain and extraterminal domain (BET) protein is an emerging target for aggressive cancer, but therapies targeting the BET in osteosarcoma have been unsuccessful in clinical trials to date, and further exploration of specific BET inhibitors is of great significance. In our study, we demonstrated that NHWD-870, a potent BET inhibitor in a phase I clinical trial, significantly inhibited tumor proliferation and promoted cell apoptosis by reversing the oncogenic signature in osteosarcoma. More importantly, we identified NHWD-870 impeded binding of BRD4 to the promoter of GP130 leading to diminished activation of JAK/STAT3 signaling pathway. Furthermore, GP130 knockdown significantly sensitizes the chemosensitivity in vitro. In OS cell-derived xenografts, NHWD-870 effectively inhibited the growth of osteosarcoma. Beyond that, NHWD-870 effectively inhibited the differentiation and maturation of precursor osteoclasts in vitro and attenuated osteoclast-mediated bone loss in vivo. Finally, we confirmed the efficacy of synthetic lethal effects of NHWD-870 and cisplatin in antagonizing osteosarcoma in a preclinical PDX model. Taken together, these findings demonstrate that NHWD-870, as an effective BET inhibitor, may be a potential candidate for osteosarcoma intervention linked to its STAT3 signaling inhibitory activity. In addition, NHWD-870 appears to be a promising therapeutic strategy for bone-associated tumors, as it interferes with the vicious cycle of tumor progression and bone destruction.

6.
Nature ; 583(7816): 437-440, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32434211

RESUMEN

In December 2019, coronavirus disease 2019 (COVID-19), which is caused by the new coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was identified in Wuhan (Hubei province, China)1; it soon spread across the world. In this ongoing pandemic, public health concerns and the urgent need for effective therapeutic measures require a deep understanding of the epidemiology, transmissibility and pathogenesis of COVID-19. Here we analysed clinical, molecular and immunological data from 326 patients with confirmed SARS-CoV-2 infection in Shanghai. The genomic sequences of SARS-CoV-2, assembled from 112 high-quality samples together with sequences in the Global Initiative on Sharing All Influenza Data (GISAID) dataset, showed a stable evolution and suggested that there were two major lineages with differential exposure history during the early phase of the outbreak in Wuhan. Nevertheless, they exhibited similar virulence and clinical outcomes. Lymphocytopenia, especially reduced CD4+ and CD8+ T cell counts upon hospital admission, was predictive of disease progression. High levels of interleukin (IL)-6 and IL-8 during treatment were observed in patients with severe or critical disease and correlated with decreased lymphocyte count. The determinants of disease severity seemed to stem mostly from host factors such as age and lymphocytopenia (and its associated cytokine storm), whereas viral genetic variation did not significantly affect outcomes.


Asunto(s)
Betacoronavirus/genética , Betacoronavirus/patogenicidad , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Interacciones Huésped-Patógeno/inmunología , Linfopenia/virología , Neumonía Viral/inmunología , Neumonía Viral/virología , Síndrome de Dificultad Respiratoria/virología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Envejecimiento , Animales , Infecciones Asintomáticas/epidemiología , Betacoronavirus/clasificación , Betacoronavirus/aislamiento & purificación , COVID-19 , China/epidemiología , Estudios de Cohortes , Infecciones por Coronavirus/complicaciones , Infecciones por Coronavirus/epidemiología , Enfermedad Crítica/epidemiología , Progresión de la Enfermedad , Evolución Molecular , Femenino , Variación Genética , Genoma Viral/genética , Hospitalización/estadística & datos numéricos , Humanos , Mediadores de Inflamación/inmunología , Interleucina-6/sangre , Interleucina-6/inmunología , Interleucina-8/sangre , Interleucina-8/inmunología , Recuento de Linfocitos , Linfopenia/complicaciones , Masculino , Persona de Mediana Edad , Pandemias , Filogenia , Neumonía Viral/complicaciones , Neumonía Viral/epidemiología , Síndrome de Dificultad Respiratoria/complicaciones , SARS-CoV-2 , Linfocitos T/citología , Linfocitos T/inmunología , Factores de Tiempo , Resultado del Tratamiento , Virulencia/genética , Esparcimiento de Virus , Adulto Joven , Zoonosis/transmisión , Zoonosis/virología
7.
Aging Dis ; 10(3): 578-591, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31165002

RESUMEN

Liuwei Dihuang (LWDH), a famous traditional Chinese medicine, is widely used in the clinical treatment of aging-related diseases in China. However, its pharmacological mechanisms are not clear. In the present study, we evaluated the lifespan extension effect of LWDH in C. elegans and mice and revealed its underlying mechanisms. The results showed that LWDH significantly extended the lifespan of C. elegans in a dose-dependent manner. LWDH also conferred protection to nematodes against oxidative stress and reduced their fat storage. Genetics analysis and microarray data showed that the longevity effect of LWDH was attributed to the regulation of the innate immune response, proteolysis, lipid metabolism, and the oxidation-reduction process and was dependent on daf-16. Among the six herbs in the formula, Radix Rehmanniae Preparata and Fructus Macrocarpii contributed most to the longevity effect of this medicine, while the other four components had a synergistic effect on the longevity effect of the prescription. The lack of any single herb reduced the efficacy of the complete formula. LWDH also extended the lifespan and reduced both the weight and oxidant stress status in aged mice. Taken together, these results suggested that LWDH might function in a multi-target manner to extend the lifespan in both C. elegans and aged mice, and the best effect was achieved with the complete formula.

8.
Inorg Chem ; 58(4): 2659-2668, 2019 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-30730721

RESUMEN

Isostructural lanthanide-based coordination polymers that are obtained by reactions in water of a lanthanide chloride and the sodium salt of 5-methoxyisophthalate (mip2-) have the general chemical formula [Ln2(mip)3(H2O)8·4H2O]∞ with Ln = Nd-Er except Pm plus Y (symbolized by [Ln2(mip)3]∞). Some of these homo-lanthanide compounds present very high luminescence brightness. The weak intermetallic energy transfer between lanthanide ions observed in these compounds allows the design of hetero-lanthanide coordination polymers with tunable luminescence properties. A molecular alloy that involved six different lanthanide ions (Nd3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+) has been prepared and its luminescent properties have been studied. This compound, under a unique irradiation wavelength (λexc = 325 nm), exhibits almost 20 emission peaks in both the visible and the NIR regions at room temperature. This unprecedented richness of the emission spectrum could be of great interest as far as luminescent bar-codes are targeted.

9.
J Mol Cell Biol ; 11(8): 649-664, 2019 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-30383247

RESUMEN

Acquired drug resistance is the major reason why patients fail to respond to cancer therapies. It is a challenging task to determine the tipping point of endocrine resistance and detect the associated molecules. Derived from new systems biology theory, the dynamic network biomarker (DNB) method is designed to quantitatively identify the tipping point of a drastic system transition and can theoretically identify DNB genes that play key roles in acquiring drug resistance. We analyzed time-course mRNA sequence data generated from the tamoxifen-treated estrogen receptor (ER)-positive MCF-7 cell line, and identified the tipping point of endocrine resistance with its leading molecules. The results show that there is interplay between gene mutations and DNB genes, in which the accumulated mutations eventually affect the DNB genes that subsequently cause the change of transcriptional landscape, enabling full-blown drug resistance. Survival analyses based on clinical datasets validated that the DNB genes were associated with the poor survival of breast cancer patients. The results provided the detection for the pre-resistance state or early signs of endocrine resistance. Our predictive method may greatly benefit the scheduling of treatments for complex diseases in which patients are exposed to considerably different drugs and may become drug resistant.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/metabolismo , Antineoplásicos Hormonales/química , Antineoplásicos Hormonales/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/genética , Resistencia a Antineoplásicos/genética , Femenino , Humanos , Células MCF-7 , Mutación/genética , Biología de Sistemas , Tamoxifeno/química , Tamoxifeno/farmacología
10.
Cancer Biomark ; 21(1): 161-168, 2017 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-29081410

RESUMEN

BACKGROUND: Nevoid basal cell carcinoma syndrome (NBCCS) is a rare autosomal dominant disease with a complex genetic etiology. Although three causative genes (PTCH1, PTCH2, SUFU) have been identified through linkage analysis and Sanger sequencing, the genetic background of NBCCS hasn't been fully understood. METHODS: We performed a whole-exome sequencing (WES) in a Han Chinese NBCCS family and two unaffected volunteers to search for its causative gene. Bioinformatic analysis was used to select candidate genes and analyze the functional networks of each candidate gene. RESULTS: A total of 8 single-nucleotide variants (SNVs) were detected in PTCH1, PTCH2 and SUFU in all the 5 subjects, however none of them was considered the pathogenic genetic mutation in this NBCCS family. The following filtering process identified 17 novel candidate genes (GBP3, AMPD1, ASPM, UNC5C, RBM46, HSPA1L, PNPLA1, GPR126, AP5Z1, ZFHX4, KIF24, C10orf128, COX15, GPRC5A, UGGT2, RHBDF1, RPUSD1). Among them ZFHX4 had been already identified as a new basal cell carcinoma susceptibility loci through a genome-wide association study (GWAS) and was considered the most likely pathogenic gene for this NBCCS family. The functional network analysis revealed that ZFHX4 may be involved in notch signaling pathway. CONCLUSIONS: Our study reported the identification of 17 novel candidate genes in a Han Chinese family through WES. ZFHX4 may be a susceptibility gene for NBCCS in Chinese population.


Asunto(s)
Síndrome del Nevo Basocelular/genética , Secuenciación del Exoma/métodos , Predisposición Genética a la Enfermedad/genética , Mutación , Anciano , Pueblo Asiatico/genética , Síndrome del Nevo Basocelular/etnología , China , Predisposición Genética a la Enfermedad/etnología , Estudio de Asociación del Genoma Completo/métodos , Proteínas de Homeodominio/genética , Humanos , Masculino , Transducción de Señal/genética , Factores de Transcripción/genética
11.
Oncotarget ; 8(67): 110914-110921, 2017 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-29340026

RESUMEN

CircRNAs are a group of endogenous noncoding RNAs. The quickly developing high throughput RNA sequencing technologies along with novel bioinformatics approaches have enabled researchers to systematically identify circRNAs and their biological functions in cells. Deep sequencing of rRNA-depleted RNAs treated with RNase R, which digests linear RNAs and leaves circRNAs enriched, is an efficient way to identify circRNAs. However, very few of RNase R treated data are at hand but a large amount of total RNA-Seq data with no sequencing costs is available, for circRNA predictions. In this study, we systematically investigated the prediction bias from total RNA-Seq data as well as the influence of sequencing depth, sequencing quality and single-end or paired-end sequencing strategy on the predictions. We also identified circRNA properties that may contribute to the improved prediction performance. Our analysis shows that circRNA predictions from total RNA-Seq data gain ∼50% true positive. Sequencing error dramatically worsens the predictions, rather than single-end sequencing strategy or low sequencing depth. However, false positive can be carefully controlled by using data with good quality and narrowing down circRNAs guided by their properties.

12.
Bioinformatics ; 32(21): 3336-3338, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27402906

RESUMEN

MOTIVATION: Despite the growing popularity in using CRISPR/Cas9 technology for genome editing and gene knockout, its performance still relies on well-designed single guide RNAs (sgRNA). In this study, we propose a web application for the Design and Optimization (CRISPR-DO) of guide sequences that target both coding and non-coding regions in spCas9 CRISPR system across human, mouse, zebrafish, fly and worm genomes. CRISPR-DO uses a computational sequence model to predict sgRNA efficiency, and employs a specificity scoring function to evaluate the potential of off-target effect. It also provides information on functional conservation of target sequences, as well as the overlaps with exons, putative regulatory sequences and single-nucleotide polymorphisms (SNPs). The web application has a user-friendly genome-browser interface to facilitate the selection of the best target DNA sequences for experimental design. AVAILABILITY AND IMPLEMENTATION: CRISPR-DO is available at http://cistrome.org/crispr/ CONTACT: qiliu@tongji.edu.cn or hanxu@jimmy.harvard.edu or xsliu@jimmy.harvard.eduSupplementary information: Supplementary data are available at Bioinformatics online.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Biología Computacional , Edición Génica , Genoma , Animales , ADN , Exones , Humanos , Ratones , ARN Guía de Kinetoplastida
13.
Gene ; 587(2): 163-8, 2016 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-27150569

RESUMEN

MOTIVATION: Biological processes involve much complex interplay between cellular molecules at different molecular levels, and this interplay may exhibit various co-expression patterns explicitly representing the cellular inner regulation mechanism. Whereas, coexpression patterns cannot be necessarily conserved across the different molecular levels for complex regulation processes involved even after transcripts being produced. Investigation of co-expression propagation from transcript level to protein level will reflect inner regulation effects in function states of cells. RESULTS: In this study, we perform a comparative analysis of gene coexpression patterns in Plasmodium falciparum. We investigate coexpression patterns propagation from transcript level to protein level to reveal the underlying biological meaning of post-transcriptional and translational mechanism. Our systems-level approach shows after posttranscriptional and translational regulation gene co-expression pace at protein level is mechanistically adjusted to higher synchronicity. Moreover, co-expression patterns at protein level are more linked to function categories, such as co-expression at the same time point is more related with binding categories, and co-expression delayed by several time points is more related with activity categories. Therefore, posttranscriptional and translational regulation modulates co-expression relationships between molecules for meeting the function demands.


Asunto(s)
Regulación de la Expresión Génica , Plasmodium falciparum/genética , Biosíntesis de Proteínas , Proteínas Protozoarias/genética , Procesamiento Postranscripcional del ARN , Ontología de Genes , Proteínas Protozoarias/análisis
14.
Nat Genet ; 48(7): 725-32, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27240091

RESUMEN

We developed a computational method to infer the complementarity-determining region 3 (CDR3) sequences of tumor-infiltrating T cells in 9,142 RNA-seq samples across 29 cancer types. We identified over 600,000 CDR3 sequences, including 15% that were full length. CDR3 sequence length distribution and amino acid conservation, as well as variable gene usage, for infiltrating T cells in many tumors, except in brain and kidney cancers, resembled those for peripheral blood cells from healthy donors. We observed a strong association between T cell diversity and tumor mutation load, and we predicted SPAG5 and TSSK6 as putative immunogenic cancer/testis antigens in multiple cancers. Finally, we identified three potential immunogenic somatic mutations on the basis of their co-occurrence with CDR3 sequences. One of them, a PRAMEF4 mutation encoding p.Phe300Val, was predicted to result in peptide binding strongly to both MHC class I and class II molecules, with matched HLA types in its carriers. Our analyses have the potential to simultaneously identify immunogenic neoantigens and tumor-reactive T cell clonotypes.


Asunto(s)
Regiones Determinantes de Complementariedad/genética , Linfocitos Infiltrantes de Tumor/metabolismo , Mutación/genética , Proteínas de Neoplasias/genética , Neoplasias/genética , Neoplasias/inmunología , Subgrupos de Linfocitos T/metabolismo , Antígenos de Neoplasias/genética , Antígenos HLA/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Linfocitos Infiltrantes de Tumor/inmunología , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Subgrupos de Linfocitos T/inmunología
15.
Clin Transl Med ; 4(1): 66, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26220863

RESUMEN

BACKGROUND: Genomic heterogeneity in human cancers complicates gene-centric personalized medicine. Malignant tumors often share a core group of pathways that are perturbed by diverse genetic mutations. Therefore, one possible solution to overcome the heterogeneity challenge is a shift from gene-centric to pathway-centric therapies. Pathway-centric perspectives, which underscore the need to understand key pathways and their critical properties, could address the complexity of cancer heterogeneity better than gene-centric approaches to aid cancer drug discovery and therapy. METHODS: We used large-scale pharmacogenomic profiling data provided by the Cancer Genome Project of the Wellcome Trust Sanger Institute and the Cancer Cell Line Encyclopedia. In a systematic in silico investigation of ERK signalling pathway components and topological structures determines their influences on pathway activity and targeted therapies. Mann-Whitney U test was used to identify gene alterations associated with drug sensitivity with p values and Benjamini-Hochberg correction for multiple hypotheses testing. RESULTS: The analysis demonstrated that genetic alterations were crucial to activation of effector pathway and subsequent tumorigenesis, however drug sensitivity suffered from both drug effector and non-effector pathways, which were determined by not only underlying genomic alterations, but also interplay and topological relationship of components in pathway, suggesting that the combinatorial targets of key nodes in perturbed pathways may yield better treatment outcome. Furthermore, we proposed a model to provide a more comprehensive insight and understanding of pathway-centric cancer therapies. CONCLUSIONS: Our study provides a holistic view of factors influencing drug sensitivity and sheds light on pathway-centric cancer therapies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...