Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Cell Physiol ; 65(2): 243-258, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-37955399

RESUMEN

Carbonic anhydrase (CA) catalyzes the reversible CO2 hydration reaction that produces bicarbonate for phosphoenolpyruvate carboxylase (PEPC). This is the initial step for transmitting the CO2 signal in C4 photosynthesis. However, it remains unknown whether the maize (Zea mays L.) CA gene, ZmCA4, plays a role in the maize photosynthesis process. In our study, we found that ZmCA4 was relatively highly expressed in leaves and localized in the chloroplast and the plasma membrane of mesophyll protoplasts. Knock-out of ZmCA4 reduced CA activity, while overexpression of ZmCA4 increased rubisco activity, as well as the quantum yield and relative electron transport rate in photosystem II. Overexpression of ZmCA4 enhanced maize yield-related traits. Moreover, ZmCA4 interacted with aquaporin ZmPIP2;6 in bimolecular fluorescence complementation and co-immunoprecipitation experiments. The double-knock-out mutant for ZmPIP2;6 and ZmCA4 genes showed reductions in its growth, CA and PEPC activities, assimilation rate and photosystem activity. RNA-Seq analysis revealed that the expression of other ZmCAs, ZmPIPs, as well as CO2 signaling pathway homologous genes, and photosynthetic-related genes was all altered in the double-knock-out mutant compared with the wild type. Altogether, our study's findings point to a critical role of ZmCA4 in determining photosynthetic capacity and modulating CO2 signaling regulation via its interaction with ZmPIP2;6, thus providing insight into the potential genetic value of ZmCA4 for maize yield improvement.


Asunto(s)
Acuaporinas , Anhidrasas Carbónicas , Zea mays/metabolismo , Dióxido de Carbono/metabolismo , Anhidrasas Carbónicas/genética , Anhidrasas Carbónicas/metabolismo , Fotosíntesis/genética , Acuaporinas/genética , Acuaporinas/metabolismo , Transducción de Señal/genética , Expresión Génica
2.
Plant Cell Environ ; 46(6): 1833-1848, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36891878

RESUMEN

Salt stress is a major environmental factor limiting crop growth and productivity. Here, we show that Salt-Tolerant Gene 1 (ZmSTG1) contributes to salt tolerance by maintaining photosystem activity in maize. ZmSTG1 encodes an endoplasmic reticulum localized protein and retrotransposon insertion in the promoter region causes differential expression levels in maize inbred lines. Overexpression of ZmSTG1 improved plant growth vigor, and knockout of ZmSTG1 weakened plant growth under normal and salt stress conditions. Transcriptome and metabolome analyses indicated that ZmSTG1 might regulate the expression of lipid trafficking-related genes dependent on the abscisic acid (ABA) signaling pathway, thereby increasing the galactolipids and phospholipid concentrations in the photosynthetic membrane under salt stress. Chlorophyll fluorescence parameters showed that the knockout of ZmSTG1 led to significant impairment of plant photosystem II (PSII) activity under normal and salt stress conditions, whereas overexpression of ZmSTG1 dramatically improved plant PSII activity under salt stress conditions. We also demonstrated that the application of the salt-tolerant locus could enhance salt tolerance in hybrid maize plants. Taken together, we propose that ZmSTG1 may modulate the lipid composition in the photosynthetic membrane by affecting the expression of lipid trafficking-related genes to maintain the photosynthetic activity of plants under salt stress.


Asunto(s)
Tolerancia a la Sal , Zea mays , Tolerancia a la Sal/genética , Zea mays/fisiología , Complejo de Proteína del Fotosistema II/metabolismo , Estrés Salino , Fosfolípidos/metabolismo , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
PLoS One ; 14(6): e0218234, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31170270

RESUMEN

[This corrects the article DOI: 10.1371/journal.pone.0198639.].

4.
PLoS One ; 13(6): e0198639, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29856862

RESUMEN

Drought and salt stress are major abiotic stress that inhibit plants growth and development, here we report a plasma membrane intrinsic protein ZmPIP1;1 from maize and identified its function in drought and salt tolerance in Arabidopsis. ZmPIP1;1 was localized to the plasma membrane and endoplasmic reticulum in maize protoplasts. Treatment with PEG or NaCl resulted in induced expression of ZmPIP1;1 in root and leaves. Constitutive overexpression of ZmPIP1;1 in transgenic Arabidopsis plants resulted in enhanced drought and salt stress tolerance compared to wild type. A number of stress responsive genes involved in cellular osmoprotection in ZmPIP1;1 overexpression plants were up-regulated under drought or salt condition. ZmPIP1;1 overexpression plants showed higher activities of reactive oxygen species (ROS) scavenging enzymes such as catalase and superoxide dismutase, lower contents of stress-induced ROS such as superoxide, hydrogen peroxide and malondialdehyde, and higher levels of proline under drought and salt stress than did wild type. ZmPIP1;1 may play a role in drought and salt stress tolerance by inducing of stress responsive genes and increasing of ROS scavenging enzymes activities, and could provide a valuable gene for further plant breeding.


Asunto(s)
Acuaporinas/genética , Arabidopsis/fisiología , Sequías , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/fisiología , Tolerancia a la Sal/genética , Regulación de la Expresión Génica de las Plantas , Fitomejoramiento/métodos , Especies Reactivas de Oxígeno/metabolismo , Regulación hacia Arriba , Zea mays/genética
5.
Mol Genet Genomics ; 290(5): 1819-31, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25851237

RESUMEN

Gene imprinting describes an epigenetic phenomenon, whereby genetically identical alleles are differentially expressed dependent on parent-of-origin. Some imprinted genes belonged to NUCLEAR FACTOR Y (NF-Y) transcription factors, which were involved in many important metabolic processes in plant. The characterizations of imprinted genes are of great importance for their function exploration. In this paper, 15 non-redundant NF-YC genes were identified in the maize genome and the paternally expressed gene NF-YC8 was further analyzed. NF-YC8 primarily expressed in maize immature ear and tassel and phylogenetic analysis showed that NF-YC8 was highly homologous with Arabidopsis thaliana NF-YC2 genes which function in regulation of the flowering processes, ER stress response. Furthermore, NF-YC8 was a differential, gene-specific imprinted gene at 14 DAP and persistently imprinted throughout later endosperm development in the B73/Mo17 genetic background. Bisulfite sequencing for NF-YC8 in maize endosperm showed that the paternal alleles were higher methylated (CG, CHG and CHH contexts) than maternal alleles in the 5' upstream region, and the coding region was highly methylated in CG context. Additionally, TE (CG, CHG and CHH contexts) and repetitive region (CG and CHG contexts) were all highly methylated. These results are the first description of evolution and molecular characterization of maize NF-YC8 and will provide new references for maize NF-YC genetic analysis.


Asunto(s)
Endospermo/genética , Genes de Plantas , Impresión Genómica , Zea mays/genética , Clonación Molecular , Metilación de ADN , Filogenia , Polen , Zea mays/clasificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...