Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39001812

RESUMEN

The utilization of micronano composite scaffolds has been extensively demonstrated to confer the superior advantages in bone repair compared to single nano- or micron-sized scaffolds. Nevertheless, the enhancement of bioactivities within these composite scaffolds remains challenging. In this study, we propose a novel approach to combine melt electrowriting (MEW) and solution electrospinning (SES) techniques for the fabrication of a composite scaffold incorporating hydroxyapatite (HAP), an osteogenic component, and roxithromycin (ROX), an antibacterial active component. Scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR) confirmed the hierarchical architecture of the nanofiber-microgrid within the scaffold, as well as the successful loading of HAP and ROX. The incorporation of HAP enhanced the water absorption capacity of the composite scaffold, thus promoting cell adhesion and proliferation, as well as osteogenic differentiation. Furthermore, ROX resulted in effective antibacterial capability without any observable cytotoxicity. Finally, the scaffolds were applied to a rat calvarial defect model, and the results demonstrated that the 20% HAP group exhibited superior new bone formation without causing adverse reactions. Therefore, our findings present a promising strategy for designing and fabricating bioactive scaffolds for bone regeneration.

2.
Diagnostics (Basel) ; 14(12)2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38928642

RESUMEN

BACKGROUND: Diffusion tensor imaging (DTI) has been increasingly recognized for its capability to study microstructural changes in the neuropathology of brain diseases. However, the optimal DTI metric and its diagnostic utility for a variety of spinal cord diseases are still under investigation. PURPOSE: To evaluate the diagnostic efficacy of DTI metrics for differentiating between cervical spondylosis, myelitis, and spinal tumors. METHODS: This retrospective study analyzed DTI scans from 68 patients (22 with cervical spondylosis, 23 with myelitis, and 23 with spinal tumors). DTI indicators, including fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD) and axial diffusivity (AD), were calculated. The Kruskal-Wallis test was used to compare these indicators, followed by Receiver Operating Characteristic (ROC) curve analysis, to evaluate the diagnostic efficacy of each indicator across disease pairs. Additionally, we explored the correlations of DTI indicators with specific clinical measurements. RESULTS: FA values were significantly lower in tumor patients compared to those with cervical spondylosis (p < 0.0001) and myelitis (p < 0.05). Additionally, tumor patients exhibited significantly elevated MD and RD values relative to the spondylosis and myelitis groups. ROC curve analysis underscored FA's superior discriminative performance, with an area under the curve (AUC) of 0.902 for differentiating tumors from cervical spondylosis, and an AUC of 0.748 for distinguishing cervical myelitis from spondylosis. Furthermore, a significant negative correlation was observed between FA values and Expanded Disability Status Scores (EDSSs) in myelitis patients (r = -0.62, p = 0.002), as well as between FA values and Ki-67 scores in tumor patients (r = -0.71, p = 0.0002). CONCLUSION: DTI indicators, especially FA, have the potential in distinguishing spondylosis, myelitis, and spinal cord tumors. The significant correlation between FA values and clinical indicators highlights the value of FA in the clinical assessment and prognosis of spinal diseases and may be applied in diagnostic protocols in the future.

3.
Mol Hortic ; 4(1): 25, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898491

RESUMEN

Prunus conradinae, a valuable flowering cherry belonging to the Rosaceae family subgenus Cerasus and endemic to China, has high economic and ornamental value. However, a high-quality P. conradinae genome is unavailable, which hinders our understanding of its genetic relationships and phylogenesis, and ultimately, the possibility of mining of key genes for important traits. Herein, we have successfully assembled a chromosome-scale P. conradinae genome, identifying 31,134 protein-coding genes, with 98.22% of them functionally annotated. Furthermore, we determined that repetitive sequences constitute 46.23% of the genome. Structural variation detection revealed some syntenic regions, inversions, translocations, and duplications, highlighting the genetic diversity and complexity of Cerasus. Phylogenetic analysis demonstrated that P. conradinae is most closely related to P. campanulata, from which it diverged ~ 19.1 million years ago (Mya). P. avium diverged earlier than P. cerasus and P. conradinae. Similar to the other Prunus species, P. conradinae underwent a common whole-genome duplication event at ~ 138.60 Mya. Furthermore, 79 MADS-box members were identified in P. conradinae, accompanied by the expansion of the SHORT VEGETATIVE PHASE subfamily. Our findings shed light on the complex genetic relationships, and genome evolution of P. conradinae and will facilitate research on the molecular breeding and functions of key genes related to important horticultural and economic characteristics of subgenus Cerasus.

4.
Sci Total Environ ; 922: 171407, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38432366

RESUMEN

Biochar is a typical soil organic amendment; however, there is limited understanding of its impact on the metabolic characteristics of microorganisms in saline-alkaline soil microenvironment, as well as the advantages and disadvantages of plant-microorganism interactions. To elucidate the mechanisms underlying the impact of saline-alkali stress on cotton, a 6-month pot experiment was conducted, involving the sowing of cotton seedlings in saline-alkali soil. Three different biochar application levels were established: 0 % (C0), 1 % (C1), and 2 % (C2). Results indicated that biochar addition improved the biomass of cotton plants, especially under C2 treatment; the dry weight of cotton bolls were 8.15 times that of C0. Biochar application led to a rise in the accumulation of photosynthetic pigments by 8.30-51.89 % and carbohydrates by 7.4-10.7 times, respectively. Moreover, peroxidase (POD) activity, the content of glutathione (GSH), and ascorbic acid (ASA) were elevated by 23.97 %, 118.39 %, and 48.30 % under C2 treatment, respectively. Biochar caused a reduction in Na+ uptake by 8.21-39.47 %, relative electrical conductivity (REC) of plants, and improved K+/Na+ and Ca2+/Na+ ratio indicating that biochar alleviated salinity-caused growth reduction. Additionally, the application of biochar enhanced the absorption intensity of polysaccharide fingerprints in cotton leaves and roots. Two-factor co-occurrence analysis indicated that the key differential metabolites connected to several metabolic pathways were L-phenylalanine, piperidine, L-tryptophan, and allysine. Interestingly, biochar altered the metabolic characteristics of saline-alkali soil, especially related to the biosynthesis and metabolism of amino acids and purine metabolism. In conclusion, this study demonstrates that biochar may be advantageous in saline soil microenvironment; it has a favorable impact on how plants and soil microbial metabolism interact.


Asunto(s)
Álcalis , Suelo , Suelo/química , Gossypium , Salinidad , Carbón Orgánico/química , Antioxidantes
5.
Brain Res ; 1831: 148830, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38408557

RESUMEN

OBJECTIVES: Previous studies have demonstrated that optic neuritis (ON) affects brain plasticity. However, whether ON affects the spinal cord remains unclear. We aimed to investigate the spinal cord changes in ON and their associations with disability. METHODS: A total of 101 ON patients, and 41 healthy controls (HC) were retrospectively recruited. High-resolution imaging was conducted using a Magnetization Prepared Rapid Acquisition Gradient-Echo (MP-RAGE) sequence for T1-weighted images and an echo planar imaging (EPI) sequence for Diffusion Tensor Imaging (DTI) data collection. Additionally, patients' disability and cognitive impairment were evaluated using the Expanded Disability Status Scale (EDSS) and the Paced Auditory Serial Addition Test (PASAT), respectively. The quantitative spinal MRI was employed to examine the cross-sectional area (CSA) and diffusion indicators, with a specific focus on calculating the average values across the C2-C7 cervical spinal cord segments. CSA, fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) were compared between groups. Correlation analyses were performed between CSA, diffusion indicators, and clinical variables. RESULTS: No significant differences were found in CSA between ON patients and HCs. MD (p = 0.007) and RD (p = 0.018) were increased in ON patients compared with HCs, and AD was decreased in ON (p = 0.013). The AD values of the ON patients were significantly positively correlated with PASAT scores (r = 0.37, p < 0.001). CONCLUSIONS: This study provided imaging evidence for DTI abnormalities in patients with ON. Spinal cord DTI can improve our knowledge of the path physiology of ON, and clinical progression.


Asunto(s)
Imagen de Difusión Tensora , Traumatismos de la Médula Espinal , Humanos , Imagen de Difusión Tensora/métodos , Estudios Retrospectivos , Médula Espinal/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos
6.
J Environ Manage ; 352: 120033, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38218168

RESUMEN

Saline-alkali soil poses significant chanllenges to sustainable development of agriculture. Although biochar is commonly used as a soil organic amendment, its microbial remediation mechanism on saline-alkali soil requires further confirmation. To address this, we conducted a pot experiment using cotton seedlings to explore the potential remediation mechanism of rice straw biochar (BC) at three different levels on saline-alkaline soil. The results showed that adding of 2% biochar greatly improved the quality of saline-alkaline soil by reducing pH levels, electrical conductivity (EC), and water-soluble ions. Moreover, biochar increased the soil organic matter (SOM), nutrient availability and extracellular enzyme activity. Interestingly, it also reduced soil salinity and salt content in various cotton plant tissues. Additionally, biochar had a notable impact on the composition of the microbial community, causing changes in soil metabolic pathways. Notably, the addition of biochar promoted the growth and metabolism of dominant salt-tolerant bacteria, such as Proteobacteria, Bacteroidota, Acidobacteriota, and Actinobacteriota. By enhancing the positive correlation between microorganisms and metabolites, biochar alleviated the inhibitory effect of salt ions on microorganisms. In conclusion, the incorporation of biochar significantly improves the soil microenvironment, reduces soil salinity, and shows promise in ameliorating saline-alkaline soil conditions.


Asunto(s)
Álcalis , Microbiota , Suelo/química , Carbón Orgánico , Iones
7.
Small ; 20(11): e2304773, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37936335

RESUMEN

Practical applications of synthetic self-propelled nano and microparticles for microrobotics, targeted drug delivery, and manipulation at the nanoscale are rapidly expanding. However, fabrication limitations often hinder progress, resulting in relatively simple shapes and limited functionality. Here, taking advantage of 3D nanoscale printing, chiral micropropellers powered by the hydrogen peroxide reduction reaction are fabricated. Due to their chirality, the propellers exhibit multifunctional behavior controlled by an applied magnetic field: spinning in place (loitering), directed migration in the prescribed direction, capture, and transport of polymer cargo particles. Design parameters of the propellers are optimized by computation modeling based on mesoscale molecular dynamics. It is predicted by computer simulations, and confirmed experimentally, that clockwise rotating propellers attract each other and counterclockwise repel. These results shed light on how chirality and shape optimization enhance the functionality of synthetic autonomous micromachines.

8.
Plant Physiol Biochem ; 206: 108222, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38016371

RESUMEN

Hydrogen cyanide has been extensively used worldwide for bud dormancy break in fruit trees, consequently enhancing fruit production via expedited cultivation, especially in areas with controlled environments or warmer regions. A novel and safety nanotechnology was developed since the hazard of hydrogen cyanide for the operators and environments, there is an urgent need for the development of novel and safety approaches to replace it to break bud dormancy for fruit trees. In current study, we have systematically explored the potential of iron oxide nanoparticles, specifically α-Fe2O3, to modulate bud dormancy in sweet cherry (Prunus avium). The synthesized iron oxide nanoparticles underwent meticulous characterization and assessment using various techniques, including Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and ultraviolet-visible infrared (UV-Vis) spectroscopy. Remarkably, when applied at a concentration of 10 mg L-1 alongside gibberellin (GA4+7), these iron oxide nanoparticles exhibited a substantial 57% enhancement in bud dormancy release compared to control groups, all achieved within a remarkably short time span of 4 days. Our RNA-seq analyses further unveiled that 2757 genes within the sweet cherry buds were significantly up-regulated when treated with 10 mg L-1 α-Fe2O3 nanoparticles in combination with GA, while 4748 genes related to dormancy regulation were downregulated in comparison to the control. Moreover, we discovered an array of 58 transcription factor families among the crucial differentially expressed genes (DEGs). Through hormonal quantification, we established that the increased bud burst was accompanied by a reduced concentration of abscisic acid (ABA) at 761.3 ng/g fresh weight in the iron oxide treatment group, coupled with higher levels of gibberellins (GAs) in comparison to the control. Comprehensive transcriptomic and metabolomic analyses unveiled significant alterations in hormone contents and gene expression during the bud dormancy-breaking process when α-Fe2O3 nanoparticles were combined with GA. In conclusion, our findings provide valuable insights into the intricate molecular mechanisms underlying the impact of iron oxide nanoparticles on achieving uniform bud dormancy break in sweet cherry trees.


Asunto(s)
Prunus avium , Prunus avium/metabolismo , Giberelinas/farmacología , Giberelinas/metabolismo , Cianuro de Hidrógeno/metabolismo , Flores/genética , Proteínas de Plantas/genética , Nanopartículas Magnéticas de Óxido de Hierro , Regulación de la Expresión Génica de las Plantas , Latencia en las Plantas
9.
J Environ Manage ; 347: 119045, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37778069

RESUMEN

In order to explore the alteration of N transformation and N2O emissions in acid soil with the co-application of straw and different types of nitrogen (N) fertilizers, an incubation experiment was carried out for 40 days. There are totally five treatments in the study: (a) without straw and N fertilizer (N0), (b) straw alone application (SN0), (c) straw with NH4Cl (SN1), (d) straw with NaNO3 (SN2), and (e) straw with NH4NO3 (SN3). N2O emissions, soil physicochemical properties, and abundance/activity of ammonia-oxidizing archaea (AOA) were measured. The results showed that the combined application of straw and N enhanced N2O emissions, particularly, SN2 and SN3 treatments. Moreover, the soil pH was lower in co-application treatments and the average decreasing rate was 9.69%. Specially, the pH was lowest in the SN1 treatment. The results of correlation analysis indicated a markedly negative relationship between pH and N2O, as well as a negative relationship between pH and net mineralization rate. These findings suggest that pH alteration can affect the N transformation process in soil and thus influence N2O emissions. In addition, the dominant AOA at the genus level in the SN2 treatment was Nitrosopumilus, and Candidatus nitrosocosmicus in the SN3 treatment. The reshaped AOA structure can serve as additional evidence of the changes in the N transformation process. In conclusion, as the return of straw, the cumulation of N2O from arable acid soil depends on the form of N fertilizer. It is also important to consider how N fertilizer is applied to reduce the possibility of N being lost in the soil as gas.


Asunto(s)
Fertilizantes , Suelo , Suelo/química , Fertilizantes/análisis , Nitrógeno/análisis , Óxido Nitroso/análisis , Archaea , Agricultura
10.
Mol Hortic ; 3(1): 8, 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37789432

RESUMEN

Waterlogging has occurred more frequently in recent years due to climate change, so it is a huge threat to crop yield and quality. Sweet cherry, a fruit tree with a high economic value, is sensitive to waterlogging stress. One of the most effective methods for enhancing the waterlogging tolerance of sweet cherries is to select waterlogging-tolerant rootstocks. However, the waterlogging tolerance of different cherry rootstocks, and the underlying mechanism remains uncharacterized. Thus, we first evaluated the waterlogging resistance of five sweet cherry rootstocks planted in China. The data showed that 'Gisela 12' and 'Colt' were the most waterlogging-sensitive and -tolerant among the five tested varieties, respectively. Oxygenation effectively alleviated the adverse impacts of waterlogging stress on cherry rootstocks. Moreover, we found that the waterlogging group had lower relative water content, Fv/Fm value, net photosynthetic rate, and higher antioxidant enzyme activities, whereas the oxygenated group performed better in all these parameters. RNA-Seq analysis revealed that numerous DEGs were involved in energy production, antioxidant metabolism, hormone metabolism pathways, and stress-related transcription factors. These findings will help provide management strategies to enhance the waterlogging tolerance of cherry rootstocks and thereby achieve higher yield and better quality of cherries.

11.
J Environ Manage ; 345: 118796, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37579602

RESUMEN

In arable soils, anthropogenic activities such as fertilizer applications have intensified soil acidification in recent years. This has resulted in frequent environmental problems such as aluminum (Al) and H+ stress, which negatively impact crop yields and quality in acidic soils. Biochar, as a promising soil conditioner, has attracted much attention globally. The present study was conducted in a greenhouse by setting up 2% biochar rate to investigate how biochar relieves Al3+ hazards in acidic soil by affecting soil quality, soil environment, and soil microbiomes. The addition of biochar significantly improved soil fertility and enzyme activities, which were attributed to its ability to enhance the utilization of soil carbon sources by influencing the activity of soil microorganisms. Moreover, the Al3+ contents were significantly decreased by 66.61-88.83% compared to the C0 level (without biochar treatment). In particular, the results of the 27Al NMR suggested that forms of AlVI (Al(OH)2+, Al(OH)+ 2, and Al3+) were increased by 88.69-100.44% on the surface of biochar, reducing the Al3+ stress on soil health. The combination of biochar and nitrogen (N) fertilizer contributed to the augmentation of bacterial diversity. The application of biochar and N fertilizer increased the relative abundance of the majority of bacterial species. Additionally, the application of biochar and N fertilizer had a significant impact on soil microbial metabolism, specifically in the biosynthesis of secondary metabolites (lipids and organic acids) and carbon metabolic ability. In conclusion, biochar can enhance soil microbial activity and improve the overall health of acidic soil by driving microbial metabolism. This study offers both theoretical and technical guidance for enhancing biochar in acidified soil and promoting sustainable development in farmland production.


Asunto(s)
Aluminio , Suelo , Suelo/química , Fertilizantes , Carbón Orgánico/química , Carbono , Ácidos , Nitrógeno/análisis
12.
Hortic Res ; 10(5): uhad062, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37220556

RESUMEN

Prunus pusilliflora is a wild cherry germplasm resource distributed mainly in Southwest China. Despite its ornamental and economic value, a high-quality assembled P. pusilliflora genome is unavailable, hindering our understanding of its genetic background, population diversity, and evolutionary processes. Here, we de novo assembled a chromosome-scale P. pusilliflora genome using Oxford Nanopore, Illumina, and chromosome conformation capture sequencing. The assembled genome size was 309.62 Mb, with 76 scaffolds anchored to eight pseudochromosomes. We predicted 33 035 protein-coding genes, functionally annotated 98.27% of them, and identified repetitive sequences covering 49.08% of the genome. We found that P. pusilliflora is closely related to Prunus serrulata and Prunus yedoensis, having diverged from them ~41.8 million years ago. A comparative genomic analysis revealed that P. pusilliflora has 643 expanded and 1128 contracted gene families. Furthermore, we found that P. pusilliflora is more resistant to Colletotrichum viniferum, Phytophthora capsici, and Pseudomonas syringae pv. tomato (Pst) DC3000 infections than cultivated Prunus avium. P. pusilliflora also has considerably more nucleotide-binding site-type resistance gene analogs than P. avium, which explains its stronger disease resistance. The cytochrome P450 and WRKY families of 263 and 61 proteins were divided into 42 and 8 subfamilies respectively in P. pusilliflora. Furthermore, 81 MADS-box genes were identified in P. pusilliflora, accompanying expansions of the SVP and AGL15 subfamilies and loss of the TM3 subfamily. Our assembly of a high-quality P. pusilliflora genome will be valuable for further research on cherries and molecular breeding.

13.
Environ Res ; 231(Pt 3): 116217, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37245574

RESUMEN

The sole application of nitrogen (N) fertilizer with lower N2O emission potential or combined with biochar may help for mitigating N2O production. However, how biochar applied with various inorganic N fertilizers affected N2O emission in acidic soil remains unclear. Thus, we examined N2O emission, soil N dynamics and relating nitrifiers (i.e., ammonia-oxidizing archaea, AOA) in acidic soil. The study contained three N fertilizers (including NH4Cl, NaNO3, NH4NO3) and two biochar application rates (i.e., 0% and 0.5%). The results indicated that the alone application of NH4Cl produced more N2O. Meanwhile, the co-application of biochar and N fertilizers enhanced N2O emission as well, especially in the combined treatment of biochar and NH4NO3. Soil pH was decreased with the application of various N fertilizers, especially with NH4Cl, and the average decrease rate was 9.6%. Meanwhile, correlation analysis showed a negative relationship between N2O and pH, dramatically, which might indicate that the alteration of pH was one factor relating to N2O emission. However, there was no difference between the same N addition treatments with or without biochar on pH. Interestingly, in the combined treatment of biochar and NH4NO3, the lowest net nitrification rate and net mineralization rate appeared during days 16-23. Meanwhile, the highest emission rate of N2O in the same treatment also appeared during days 16-23. The accordance might indicate that N transformation alteration was another factor relating to N2O emissions. In addition, compared to NH4NO3 alone application, co-applied with biochar had a lower content of Nitrososphaera-AOA, which was a main contributor to nitrification. The study emphasizes the importance of using a suitable form of N fertilizers and further indicates that two factors, namely alteration of pH and N transformation rate, are related to N2O emission. Moreover, in future studies, it is necessary to explore the soil N dynamics controlled by microorganisms.


Asunto(s)
Fertilizantes , Suelo , Suelo/química , Fertilizantes/análisis , Nitrógeno , Óxido Nitroso , Archaea , Agricultura/métodos
14.
Sci Total Environ ; 879: 163196, 2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-37004773

RESUMEN

Nitrogen (N) loss poses a great threat to global environmental sustainability. The application of modified biochar is a novel strategy to improve soil nitrogen retention and alleviate the negative effects caused by N fertilizers. Therefore, in this study iron modified biochar was used as a soil amendment to investigate the potential mechanisms of N retention in Luvisols. The experiment comprised five treatments i.e., CK (control), 0.5 % BC, 1 % BC, 0.5 % FBC and 1 % FBC. Our results showed that the intensity of functional groups and surface structure of FBC was improved. The 1 % FBC treatment showed a significant increment in soil NO3--N, dissolved organic nitrogen (DON), and total nitrogen (TN) content by 374.7 %, 51.9 %, and 14.4 %, respectively, compared with CK. The accumulation of N in cotton shoots and roots was increased by 28.6 % and 6.6 % with 1 % FBC addition. The application of FBC also stimulated the activities of soil enzymes related to C and N cycling i.e., ß-glucosidase (ßG), ß-Cellobiohydrolase (CBH), and Leucine aminopeptidase (LAP). In the soil treated with FBC, a significant improvement in the structure and functions of the soil bacterial community was found. FBC addition altered the taxa involved in the N cycle by affecting soil chemical properties, especially for Achromobacte, Gemmatimonas, and Cyanobacteriales. In addition to direct adsorption, the regulation of FBC on organisms related to N-cycling also played an important role in soil nitrogen retention.


Asunto(s)
Carbón Orgánico , Nitrógeno , Nitrógeno/análisis , Adsorción , Carbón Orgánico/química , Suelo/química , Fertilizantes/análisis , Microbiología del Suelo
15.
Front Plant Sci ; 14: 1092654, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36844087

RESUMEN

Stem growth and development has considerable effects on plant architecture and yield performance. Strigolactones (SLs) modulate shoot branching and root architecture in plants. However, the molecular mechanisms underlying SLs regulate cherry rootstocks stem growth and development remain unclear. Our studies showed that the synthetic SL analog rac-GR24 and the biosynthetic inhibitor TIS108 affected stem length and diameter, aboveground weight, and chlorophyll content. The stem length of cherry rootstocks following TIS108 treatment reached a maximum value of 6.97 cm, which was much higher than that following rac-GR24 treatments at 30 days after treatment. Stem paraffin section showed that SLs affected cell size. A total of 1936, 743, and 1656 differentially expressed genes (DEGs) were observed in stems treated with 10 µM rac-GR24, 0.1 µM rac-GR24, and 10 µM TIS108, respectively. RNA-seq results highlighted several DEGs, including CKX, LOG, YUCCA, AUX, and EXP, which play vital roles in stem growth and development. UPLC-3Q-MS analysis revealed that SL analogs and inhibitors affected the levels of several hormones in the stems. The endogenous GA3 content of stems increased significantly with 0.1 µM rac-GR24 or 10 µM TIS108 treatment, which is consistent with changes in the stem length following the same treatments. This study demonstrated that SLs affected stem growth of cherry rootstocks by changing other endogenous hormone levels. These results provide a solid theoretical basis for using SLs to modulate plant height and achieve sweet cherry dwarfing and high-density cultivation.

16.
Polymers (Basel) ; 15(3)2023 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-36771973

RESUMEN

Considering the great harm to the human body caused by severe and massive bleeding, in this study, chitosan-grafted norfloxacin (CTS-NF) composites were prepared with chitosan (CTS) and norfloxacin (NF) as raw materials by a 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide-mediated coupling method to solve the limitations of slow hemostatic and poor anti-infective effects of current dressings on the market. The effects of the mass ratio of CTS to NF (MCTS/MNF), reaction temperature T and reaction time t on the grafting rate (η%) of the products were investigated through single factor tests. The preparation process was optimized with the η% as an evaluation index by means of the Box-Behnken test design and response surface analysis. The antimicrobial activity was evaluated by inhibition zone assay, and the hemostatic activity of the prepared composites was evaluated in vitro and in vivo. The results suggested that the optimum preparation conditions were the mass ratio of CTS to NF (MCTS/MNF) 5:3, reaction temperature 65 °C, and reaction time 4 h. Under this condition, the η% of CTS-NF was 45.5%. The CTS-NF composites displayed significant antimicrobial activities. Moreover, in vitro hemostasis results revealed that the CTS-NF composite had a lower blood clotting index and absorbed red blood cells to promote aggregation. In vivo ear and live hemostasis, the CTS-NF groups showed short hemostatic time (49.75 ± 3.32 s and 50.00 ± 7.21 s) and more blood loss (0.07 ± 0.010 g and 0.075 ± 0.013 g). The results showed that CTS-NF reduced the bleeding time and volume, exhibiting a significant coagulation effect. Therefore, the CTS-NF sponge is expected to be a new, effective hemostatic and antibacterial material in the future.

17.
Pain Physician ; 26(1): 45-52, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36791293

RESUMEN

BACKGROUND: Postdural puncture headache (PDPH) is one of the serious complications after lumbar puncture, but there is no effective tool to predict it. OBJECTIVES: To explore whether ultrasound measurement of optic nerve sheath diameter (ONSD) as a predictor of PDPH can be a reliable tool supported by reliable protocols and data. STUDY DESIGN: A prospective observational study. SETTING: Department of Anesthesiology. METHODS: This prospective observational study was performed in 156 patients undergoing cesarean section (CS). The patient's ONSD was recorded before anesthesia (T0), 10 minutes after anesthesia (T1), at the end of the operation (T2), at the first postoperative day (T24), at the second postoperative day (T48), and the third postoperative day (T72). During the 3-day follow-up, the patients were evaluated, identified, and divided into a PDPH group and a non-PDPH group. Age, weight, height, ASA, lumbar puncture location, and the number of lumbar puncture attempts were also recorded. We mainly analyzed the changes and differences between the 2 groups of ONSD. RESULTS: Twenty-four patients (15%) developed PDPH. The ONSD was significantly lower in the PDPH group than in the non-PDPH group at T2, T24, T48, and T72. All patients showed a significant reduction in ONSD at T1 compared to T0. Women whose ONSD continued to fall without recovery from T0 to T2 were more likely to experience PDPH (RR 5. 022; 95 CI 3.343 to 7.508). The ONSD at T24 was the best predictor of PDPH (ACU 0. 9787, 95 CI 0.9578 to 0.9996), with a cutoff value of 0.40 cm (sensitivity 92%, specificity 94%). LIMITATIONS: This is a single-center study, and ONSD may vary in different regions or ethnic groups. CONCLUSIONS: We believe that continuous measurements of ONSD may be a useful tool for predicting PDPH.


Asunto(s)
Anestesia Raquidea , Cefalea Pospunción de la Duramadre , Humanos , Embarazo , Femenino , Cefalea Pospunción de la Duramadre/etiología , Cesárea/efectos adversos , Ultrasonografía/efectos adversos , Anestesia Raquidea/efectos adversos , Punción Espinal/efectos adversos , Nervio Óptico/diagnóstico por imagen
18.
Health Econ ; 32(3): 541-557, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36377693

RESUMEN

This paper estimates the effect of in utero exposure to adverse events on late life diabetes, cardiovascular disease risks and cognition deficiency. We merge data on the regional violence during the Cultural Revolution and the excessive death rates during the Chinese Great Famine with data from the China Health and Retirement Longitudinal Study survey. Results show that female babies who were exposed in utero to the famine have higher diabetes risks, while male babies who were exposed to the Cultural Revolution are shown to have lower cognitive abilities.


Asunto(s)
Efectos Tardíos de la Exposición Prenatal , Humanos , Masculino , Femenino , Estudios Longitudinales , Efectos Tardíos de la Exposición Prenatal/epidemiología , Hambruna , China/epidemiología , Jubilación
19.
Plants (Basel) ; 11(24)2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36559557

RESUMEN

Biochar has a significant impact on improving soil, nutrient supply, and soil microbial amounts. However, the impacts of biochar on soil fungi and the soil environment after 30 months of cultivation experiments are rarely reported. We studied the potential role of peanut shell biochar (0% and 2%) in the soil properties and the soil fungal communities after 30 months of biochar application under different soil potassium (K) levels (100%, 80%, 60%, 0% K fertilizer). We found that biochar had a promoting effect on soil K after 30 months of its application, such as the available K, water-soluble K, exchangeable K, and non-exchangeable K; and increments were 125.78%, 124.39%, 126.01%, and 26.63% under biochar and K fertilizer treatment, respectively, compared to control treatment. Our data revealed that p_Ascomycota and p_Basidiomycota were the dominant populations in the soil, and their sub-levels showed different relationships with the soil properties. The relationships between c_sordariomycetes and its sub-level taxa with soil properties showed a significant positive correlation. However, c_Dothideomycetes and its sub-group demonstrated a negative correlation with soil properties. Moreover, soil enzyme activity, especially related to the soil C cycle, was the most significant indicator that affected the community and structure of fungi through structural equation modeling (SEM) and redundancy analysis (RDA). This work emphasized that biochar plays an important role in improving soil quality, controlling soil nutrients, and regulating fungal diversity and community composition after 30 months of biochar application.

20.
Nanotechnology ; 34(1)2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36191554

RESUMEN

In this study, reduced graphene oxide (rGO) were subject to ultrasonic treatment to acquire varied morphologies, and the enzymatic glucose sensors were constructed by coating the rGO onto indium tin oxide electrodes and physically linking glucose oxidase to the rGO coatings. The effects of the surface morphologies of the rGO coatings on the interfacial characteristics and the electro-catalytic capacity of the enzymatic glucose sensors were systematically investigated. It turns out that, the rGO coating with a rough surface is more hydrophilic, and exhibits uniform glucose oxidase adsorption and higher electron migration rate at the solid/liquid interface between the analytical liquid and the working electrode. As a result, the corresponding glucose sensor shows excellent electro-catalytic capacity towards glucose with a broader linear range of 0-10.0 mM, a higher sensitivity of 38.9µA·mM-1·cm-2, and a lower detection limit of 0.1µM (signal-to-noise ratio of 3). Additionally, the as-prepared glucose sensor exhibits excellent accuracy for detecting actual blood samples as well as superior resistance to interference from other substances (such as L-phenylalanine, urea, ascorbic acid, uric acid, NaCl, and KCl). These results establish the theoretical and experimental foundation for the application of rGO coating in the field of biosensors.


Asunto(s)
Técnicas Biosensibles , Grafito , Glucosa Oxidasa , Ácido Úrico , Cloruro de Sodio , Técnicas Biosensibles/métodos , Electrodos , Glucosa , Ácido Ascórbico , Urea , Fenilalanina , Técnicas Electroquímicas/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA