Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Metab ; 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702440

RESUMEN

Acetate, a precursor of acetyl-CoA, is instrumental in energy production, lipid synthesis and protein acetylation. However, whether acetate reprogrammes tumour metabolism and plays a role in tumour immune evasion remains unclear. Here, we show that acetate is the most abundant short-chain fatty acid in human non-small cell lung cancer tissues, with increased tumour-enriched acetate uptake. Acetate-derived acetyl-CoA induces c-Myc acetylation, which is mediated by the moonlighting function of the metabolic enzyme dihydrolipoamide S-acetyltransferase. Acetylated c-Myc increases its stability and subsequent transcription of the genes encoding programmed death-ligand 1, glycolytic enzymes, monocarboxylate transporter 1 and cell cycle accelerators. Dietary acetate supplementation promotes tumour growth and inhibits CD8+ T cell infiltration, whereas disruption of acetate uptake inhibits immune evasion, which increases the efficacy of anti-PD-1-based therapy. These findings highlight a critical role of acetate promoting tumour growth beyond its metabolic role as a carbon source by reprogramming tumour metabolism and immune evasion, and underscore the potential of controlling acetate metabolism to curb tumour growth and improve the response to immune checkpoint blockade therapy.

2.
Am J Cancer Res ; 14(2): 601-615, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38455405

RESUMEN

Breast cancer stem cells (BCSCs) are responsible for breast cancer metastasis, recurrence and treatment resistance, all of which make BCSCs potential drivers of breast cancer aggression. Ginsenoside Rg3, a traditional Chinese herbal medicine, was reported to have multiple antitumor functions. Here, we revealed a novel effect of Rg3 on BCSCs. Rg3 inhibits breast cancer cell viability in a dose- and time-dependent manner. Importantly, Rg3 suppressed mammosphere formation, reduced the expression of stemness-related transcription factors, including c-Myc, Oct4, Sox2 and Lin28, and diminished ALDH(+) populations. Moreover, tumor-bearing mice treated with Rg3 exhibited robust delay of tumor growth and a decrease in tumor-initiating frequency. In addition, we found that Rg3 suppressed breast cancer stem-like properties mainly through inhibiting MYC expression. Mechanistically, Rg3 accelerated the degradation of MYC mRNA by enhancing the expression of the let-7 family, which was demonstrated to bind to the MYC 3' untranslated region (UTR). In conclusion, our findings reveal the remarkable suppressive effect of Rg3 on BCSCs, suggesting that Rg3 is a promising therapeutic treatment for breast cancer.

4.
Cancer Commun (Lond) ; 42(10): 1008-1027, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35975322

RESUMEN

BACKGROUND: Maintenance of cancer stem-like cell (CSC) stemness supported by aberrantly regulated cancer cell metabolism is critical for CSC self-renewal and tumor progression. As a key glycolytic enzyme, hexokinase 2 (HK2) plays an instrumental role in aerobic glycolysis and tumor progression. However, whether HK2 directly contribute to CSC stemness maintenance in small cell lung cancer (SCLC) is largely unclear. In this study, we aimed to investgate whether HK2 independent of its glycolytic activity is directly involved in stemness maintenance of CSC in SCLC. METHODS: Immunoblotting analyses were conducted to determine the expression of HK2 in SCLC CSCs and their differentiated counterparts. CSC-like properties and tumorigenesis of SCLC cells with or without HK2 depletion or overexpression were examined by sphere formation assay and xenograft mouse model. Immunoprecipitation and mass spectrometry analyses were performed to identify the binding proteins of CD133. The expression levels of CD133-associated and CSC-relevant proteins were evaluated by immunoblotting, immunoprecipitation, immunofluorescence, and immunohistochemistry assay. RNA expression levels of Nanog, POU5F1, Lin28, HK2, Prominin-1 were analyzed through quantitative reverse transcription PCR. Polyubiquitination of CD133 was examined by in vitro or in vivo ubiquitination assay. CD133+ cells were sorted by flow cytometry using an anti-CD133 antibody. RESULTS: We demonstrated that HK2 expression was much higher in CSCs of SCLC than in their differentiated counterparts. HK2 depletion inhibited CSC stemness and promoted CSC differentiation. Mechanistically, non-mitochondrial HK2 directly interacted with CD133 and enhanced CD133 expression without affecting CD133 mRNA levels. The interaction of HK2 and CD133 promoted the binding of the deubiquitinase ubiquitin-specific protease 11 (USP11) to CD133, thereby inhibiting CD133 polyubiquitylation and degradation. HK2-mediated upregulation of CD133 expression enhanced the expression of cell renewal regulators, SCLC cell stemness, and tumor growth in mice. In addition, HK2 expression was positively correlated with CD133 expression in human SCLC specimens, and their expression levels were associated with poor prognosis of SCLC patients. CONCLUSIONS: These results revealed a critical non-metabolic function of HK2 in promotion of cancer cell stemness. Our findings provided new insights into the multifaceted roles of HK2 in tumor development.


Asunto(s)
Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Antígeno AC133/metabolismo , Animales , Línea Celular Tumoral , Enzimas Desubicuitinizantes , Hexoquinasa/genética , Humanos , Neoplasias Pulmonares/patología , Ratones , ARN , ARN Mensajero , Carcinoma Pulmonar de Células Pequeñas/genética , Tioléster Hidrolasas , Proteasas Ubiquitina-Específicas
5.
Front Oncol ; 12: 899987, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35898882

RESUMEN

USP13 is significantly amplified in over 20% of lung cancer patients and critical for tumor progression. However, the functional role of USP13 in small cell lung cancer (SCLC) remains largely unclear. In this study, we found that the deubiquitinase USP13 is highly expressed in SCLC tumor samples and positively associated with poor prognosis in multiple cohorts. In vitro and in vivo depletion of USP13 inhibited SCLC cancer stem cells (CSCs) properties and tumorigenesis, and this inhibitory effect was rescued by reconstituted expression of wide type (WT) USP13 but not the enzyme-inactive USP13 mutant. Mechanistically, USP13 interacts with fatty acid synthase (FASN) and enhances FASN protein stability. FASN downregulation suppresses USP13-enhanced cell renewal regulator expression, sphere formation ability, and de novo fatty acids biogenesis. Accordingly, we found FASN expression is upregulated in surgical resected SCLC specimens, positively correlated with USP13, and associated with poor prognosis of SCLC patients. More importantly, the small molecule inhibitor of FASN, TVB-2640, significantly inhibits lipogenic phenotype and attenuates self-renewal ability, chemotherapy resistance and USP13-mediated tumorigenesis in SCLC. Thus, our study highlights a critical role of the USP13-FASN-lipogenesis axis in SCLC cancer stemness maintenance and tumor growth, and reveals a potential combination therapy for SCLC patients.

6.
Front Oncol ; 12: 848483, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35463311

RESUMEN

Background: Rapid tumor growth inevitably results in energy stress, including deficiency of glutamine, a critical amino acid for tumor cell proliferation. However, whether glutamine deficiency allows tumor cells to use lipid droplets as an energy resource and the mechanism underlying this potential regulation remain unclear. Methods: We purified lipid droplets from H322 and H358 human non-small-cell lung cancer (NSCLC) cells under glutamine deprivation conditions and performed immunoblotting to determine the binding of choline kinase (CHK) α2 to lipid droplets. Immunofluorescence was used to quantify lipid droplet numbers and sizes. Immunoprecipitation and immunoblotting were performed to examine AMPK activation and CHKα2 phosphorylation. Cellular fatty acid levels, mitochondrial acetyl coenzyme A and ATP production, and cell apoptosis and proliferation were measured. Immunohistochemical analyses were performed to determine the expression levels of ACC pS79 and CHKα2 pS279 in tumor specimens from NSCLC patients. The prognostic value of ACC pS79 and CHKα2 pS279 was assessed using the Kaplan-Meier method and Cox regression models. Results: Glutamine deficiency induces AMPK-mediated CHKα2 S279 phosphorylation, which promotes the binding of CHKα2 to lipid droplets, resulting in recruitment of cytosolic lipase ATGL and autophagosomes and subsequent lipolysis of lipid droplets to sustain tumor cell survival and proliferation. In addition, the levels of ACC pS79 and CHKα S279 were much higher in human NSCLC specimens than in their adjacent normal tissues and positively correlated with each other. Notably, ACC pS79 and CHKα pS279 expression levels alone were associated with poor prognosis of NSCLC patients, and combined values of both phosphorylation levels were correlated with worse prognosis of the patients. Conclusion: CHKα2 plays a critical role in lipolysis of lipid droplets in NSCLC. ACC pS79 and CHKα2 pS279 alone or in combination can be used as prognostic markers in NSCLC.

7.
Front Cell Dev Biol ; 9: 743724, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34746138

RESUMEN

The iron-dependent cell death named ferroptosis has been implicated in the progression and therapeutic response of several tumors. However, potential role of ferroptosis in lung adenocarcinomas (LUAD) remained less well understood. In TCGA-LUAD cohort, unsupervised clustering was first conducted based on ferroptosis regulators extracted from FerrDb database. Comprehensive correlation analysis and comparisons were performed among ferroptosis subtypes. The ferroptosis-related prognostic (FRP) signature was identified based on filtered features and repeated LASSO and was validated in five independent cohorts. The clinical relevance between the risk score and therapeutic response was further explored by multiple algorithms. qPCR was implemented to verify gene expression. A total of 1,168 LUAD patients and 161 ferroptosis regulators were included in this study. Three ferroptosis subtypes were identified and patients in subtype B had the best prognosis among the three subtypes. Significant differences in immune microenvironment and biological function enrichment were illustrated in distinct subtypes. The Boruta algorithm was conducted on 308 common differentially expressed genes for dimensionality reduction. A total of 56 genes served as input for model construction and a six-gene signature with the highest frequencies of 881 was chosen as FRP. The prognostic significance of FRP was validated in five independent cohorts. High FRP risk score was also linked to increased tumor mutation burden, PD-L1 protein expression and number of neoantigens. Of the FRP genes, 83.3% was abnormally expressed in LUAD cell lines. In conclusion, ferroptosis plays a non-negligible role in LUAD. Exploration of the ferroptosis pattern will enhance the prognostic stratification of individual patients and move toward the purpose of personalized treatment.

8.
Front Plant Sci ; 12: 679726, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34394139

RESUMEN

Plant ecologists have long been interested in quantifying how leaf traits vary with climate factors, but there is a paucity of knowledge on these relationships given a large number of the relevant leaf traits and climate factors to be considered. We examined the responses of 11 leaf traits (including leaf morphology, stomatal structure and chemical properties) to eight common climate factors for 340 eastern Qinghai-Tibetan woody species. We showed temperature as the strongest predictor of leaf size and shape, stomatal size and form, and leaf nitrogen and phosphorus concentrations, implying the important role of local heat quantity in determining the variation in the cell- or organ-level leaf morphology and leaf biochemical properties. The effects of moisture-related climate factors (including precipitation and humidity) on leaf growth were mainly through variability in leaf traits (e.g., specific leaf area and stomatal density) related to plant water-use physiological processes. In contrast, sunshine hours affected mainly cell- and organ-level leaf size and shape, with plants developing small/narrow leaves and stomata to decrease leaf damage and water loss under prolonged solar radiation. Moreover, two sets of significant leaf trait-climate relationships, i.e., the leaf/stomata size traits co-varying with temperature, and the water use-related leaf traits co-varying with precipitation, were obtained when analyzing multi-trait relationships, suggesting these traits as good indicators of climate gradients. Our findings contributed evidence to enhance understanding of the regional patterns in leaf trait variation and its environmental determinants.

10.
J Agric Food Chem ; 69(31): 8737-8746, 2021 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34325508

RESUMEN

Due to lack of estrogen receptor α (ERα, gene name: ESR1), ERα-negative breast carcinoma is insensitive to endocrine therapy, and restoration of ERα has become a promising strategy for ERα-negative breast cancer treatment. Sesamol, a naturally occurring phenolic compound, is usually extracted from sesame seeds. Previous investigations have unmasked its anti-oxidant and anti-inflammation properties. In this study, sesamol induced ERα functional re-expression followed by upregulation of its downstream pS2 and GREB1 genes in ERα-negative breast carcinoma. Moreover, it endowed responsiveness of ERα-negative breast carcinoma to the endocrine treatment drug 4-hydroxytamoxifen without influencing the viability of normal human umbilical vein endothelial cells. Mechanistically, sesamol induced ESR1 gene promoter demethylation by downregulating the expression of the DNA methyltransferases DNMT3A and DNMT3B, without affecting DNMT1. Moreover, the non-coding RNA miR-370-3p directly targeted DNMT3A and DNMT3B mRNA, and its expression increased upon treatment with sesamol. Artificial abrogation of miR-370-3p expression with an antagomir abolished the inhibition of DNMT3A and DNMT3B expression by sesamol, resulting in a fallback in ERα reactivation. In mice, sesamol significantly induced ERα re-expression via miR-370-3p-mediated downregulation of DNMT3A and DNMT3B. Sesamol may be a safe and effective option for clinical adjuvant therapy in patients with ERα-negative breast cancer.


Asunto(s)
Neoplasias de la Mama , MicroARNs , Neoplasias de la Mama Triple Negativas , Animales , Benzodioxoles , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Línea Celular Tumoral , Células Endoteliales/metabolismo , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , MicroARNs/genética , Fenoles
11.
Nat Commun ; 12(1): 3803, 2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-34155197

RESUMEN

The adenomatous polyposis coli (APC) is a frequently mutated tumour suppressor gene in cancers. However, whether APC is regulated at the epitranscriptomic level remains elusive. In this study, we analysed TCGA data and separated 200 paired oesophageal squamous cell carcinoma (ESCC) specimens and their adjacent normal tissues and demonstrated that methyltransferase-like 3 (METTL3) is highly expressed in tumour tissues. m6A-RNA immunoprecipitation sequencing revealed that METTL3 upregulates the m6A modification of APC, which recruits YTHDF for APC mRNA degradation. Reduced APC expression increases the expression of ß-catenin and ß-catenin-mediated cyclin D1, c-Myc, and PKM2 expression, thereby leading to enhanced aerobic glycolysis, ESCC cell proliferation, and tumour formation in mice. In addition, downregulated APC expression correlates with upregulated METTL3 expression in human ESCC specimens and poor prognosis in ESCC patients. Our findings reveal a mechanism by which the Wnt/ß-catenin pathway is upregulated in ESCC via METTL3/YTHDF-coupled epitranscriptomal downregulation of APC.


Asunto(s)
Adenosina/análogos & derivados , Proteínas del Citoesqueleto/genética , Metiltransferasas/metabolismo , Proteínas de Unión al ARN/metabolismo , Adenosina/metabolismo , Animales , Carcinogénesis , Proliferación Celular , Proteínas del Citoesqueleto/metabolismo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/metabolismo , Carcinoma de Células Escamosas de Esófago/patología , Regulación Neoplásica de la Expresión Génica , Humanos , Metiltransferasas/genética , Ratones , Pronóstico , ARN Mensajero/metabolismo , Efecto Warburg en Oncología , Vía de Señalización Wnt , beta Catenina/genética , beta Catenina/metabolismo
12.
Cell Death Dis ; 12(5): 462, 2021 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-33966037

RESUMEN

FTO removes the N6-methyladenosine (m6A) modification from genes and plays a critical role in cancer development. However, the mechanisms underlying the regulation of FTO and its subsequent impact on the regulation of the epitranscriptome remain to be further elucidated. Here, we demonstrate that FTO expression is downregulated and inversely correlated with poor survival of lung adenocarcinoma patients. Mechanistically, Wnt signaling induces the binding of EZH2 to ß-catenin. This protein complex binds to the LEF/TCF-binding elements at the promoter region of FTO, where EZH2 enhances H3K27me3 and inhibits FTO expression. Downregulated FTO expression substantially enhances the m6A levels in the mRNAs of a large number of genes in critical pathways, particularly metabolic pathway genes, such as MYC. Enhanced m6A levels on MYC mRNA recruit YTHDF1 binding, which promotes MYC mRNA translation and a subsequent increase in glycolysis and proliferation of tumor cells and tumorigenesis. Our findings uncovered a critical mechanism of epitranscriptome regulation by Wnt/ß-catenin-mediated FTO downregulation and underscored the role of m6A modifications of MYC mRNA in regulating tumor cell glycolysis and growth.


Asunto(s)
Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Carcinogénesis/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Vía de Señalización Wnt/genética , beta Catenina/metabolismo , Animales , Femenino , Humanos , Ratones , Ratones Endogámicos NOD , Ratones Desnudos , ARN Mensajero/metabolismo
13.
Front Oncol ; 11: 561247, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33842305

RESUMEN

Metabolic enzymes can perform non-metabolic functions and play critical roles in the regulation of a variety of important cellular activities. Phosphoenolpyruvate carboxykinase 1 (PCK1), a gluconeogenesis enzyme, was recently identified as an AKT-regulated protein kinase that phosphorylates INSIG1/2 to promote nuclear SREBP1-dependent lipogenesis. However, the relationship of this regulation with the progression of non-small-cell lung carcinoma (NSCLC) is unclear. Here, we demonstrate that epidermal growth factor receptor (EGFR) activation induces AKT-dependent PCK1 pS90, PCK1-mediated INSIG1 pS207/INSIG2 pS151, and nuclear SREBP1 accumulation in NSCLC cells. In addition, the expression levels of AKT pS473, PCK1 pS90, INSIG1 pS207/INSIG2 pS151, and nuclear SREBP1 are higher in 451 analyzed human NSCLC specimens than in their adjacent normal tissues and positively correlated with each other in the tumor specimens. Furthermore, the expression levels of PCK1 pS90, INSIG1 pS207/INSIG2 pS151, and nuclear SREBP1 are associated with TNM stage and progression in NSCLC. Importantly, levels of PCK1 pS90 or INSIG1 pS207/INSIG2 pS151 are positively correlated with poor prognosis in NSCLC patients, and the combined expression value of the PCK1 and INSIG1/2 phosphorylation has a better prognostic value than that of each individual protein phosphorylation value and is an independent prognostic marker for NSCLC. These findings reveal the role of PCK1-mediated nuclear SREBP1 activation in NSCLC progression and highlight the potential to target the protein kinase activity of PCK1 for the diagnosis and treatment of human NSCLC.

14.
Ann Palliat Med ; 10(3): 3277-3285, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33849112

RESUMEN

BACKGROUND: Small-cell lung cancer (SCLC) is a type of lung cancer with high invasiveness and poor prognosis. Although SCLC is effective for initial treatment, the vast majority of patients will relapse, the efficacy of posterior line therapy is limited, and there is a lack of effective treatment. At the same time, in the past 30 years, there has been little progress in first-line treatment. With the progress of antiangiogenic therapy, whether it can be used in the treatment of SCLC is worth exploring. Therefore, a single-arm multicenter clinical study was conducted on the efficacy, optimization, and safety of endostatin combined chemotherapy in SCLC. METHODS: This study is a prospective non-blind single-arm multicenter study. From January 2016 to July 2019, a total of 22 patients with histologically diagnosed SCLC were enrolled in three centers. The treatment regimen was as follows: continuous intravenous pump infusion of endostatin (90 mg) for 72 hours, 3 days before chemotherapy, and continuous pump infusion of endostatin (120 mg) for 96 hours the next day following the infusion of chemotherapeutic drugs; the chemotherapy regimen was administered with standard platinum combined with etoposide once every 21 days. After six cycles, endostatin maintenance therapy was used until the disease progressed or intolerable adverse reactions occurred. The therapeutic effect was evaluated by imaging and oncology markers every two cycles, and the adverse reactions, tumor progression time, and patient survival time were recorded. RESULTS: Among the 21 patients analyzed, the median progression-free survival (PFS) was 8.0 months, the median overall survival (OS) was 13.6 months, the objective effective rate (ORR) was 61.9%, and the disease control rate (DCR) was 95.2%. All patients tolerated the treatment. The main adverse reactions were myelosuppression, albuminuria, nausea, and vomiting. The incidence of grade 3 or 4 adverse reactions was 7.2%, which could be relieved by symptomatic support treatment. There were no treatment-related deaths. CONCLUSIONS: Endostatin combined with platinum-etoposide is safe and effective in the treatment of SCLC.


Asunto(s)
Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Endostatinas/uso terapéutico , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Estudios Prospectivos , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico , Resultado del Tratamiento
15.
Front Mol Biosci ; 8: 587436, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33778001

RESUMEN

Ferroptosis is a newly discovered type of programmed cell death that differs from canonical apoptosis. However, the potential role of ferroptosis in lung adenocarcinoma (LUAD) has not been elaborated. In total, 1,328 samples from databases and 36 ferroptosis regulators were included in this study. By combining random survival forest and principal component analysis algorithms, a robust prognostic ferroptosis-related risk score (FRRS) was constructed, and the performance was validated in three independent datasets. Based on the median risk score, two subgroups were identified. Then, comparisons, including of mutational profiles, functional enrichment analyses and immune components, were conducted between subgroups. An immunotherapy cohort was applied to explore potential therapeutic-related biomarkers. Finally, the clinical utility of FRRS was validated in a proteomic cohort. In the TCGA-LUAD cohort, FRRS was calculated using the expression of 11 selected genes, and patients with high FRRS had a significantly (p < 0.001) worse prognosis than those with low FRRS. Multivariate regression suggested that FRRS was an independent prognostic factor. Functional enrichment analysis indicated that FRRS was mainly involved in cell cycle, metabolic and immune-related pathways. Furthermore, FRRS was shown to be significantly (p < 0.001) associated with the abundance of CD8 T cells and tumor mutation burden (TMB). The combination of TMB and FANCD2 expression, the main contributor to FRRS, substantially increased the precision of predicting the therapeutic response. In conclusion, the present study revealed the potential role of ferroptosis regulators in LUAD and identified ferroptosis-related biomarkers for prognostic and immunotherapeutic predictions.

16.
Ecol Evol ; 11(3): 1280-1293, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33598130

RESUMEN

Plant regeneration strategy plays a critical role in species survival and can be used as a proxy for the evolutionary response of species to climate change. However, information on the effects of key plant traits and phylogenetic relatedness on seed germination is limited at large regional scales that vary in climate. To test the hypotheses that phylogenetic niche conservatism plays a critical force in shaping seed ecophysiological traits across species, and also drives their response to climatic fluctuation, we conducted a controlled experiment on seed germination and determined the percentage and rate of germination for 249 species in subtropical China under two temperature regimes (i.e., daily 25°C; daily alternating 25/15°C for each 12 hr). Germination was low with a skewed distribution (mean = 38.9% at 25°C, and 43.3% at 25/15°C). One fifth of the species had low (<10%) and slow (4-30 days) germination, and only a few (8%) species had a high (>80%) and rapid (1.2-6.6 days) germination. All studied plant traits (including germination responses) showed a significant phylogenetic signal, with an exception of seed germination percentage under the alternating temperature scenario. Generalized linear models (GLMs) and phylogenetic generalized estimation equations (GEEs) demonstrated that growth form and seed dispersal mode were strong drivers of germination. Our experimental study highlights that integrating plant key traits and phylogeny is critical to predicting seed germination response to future climate change.

17.
PLoS One ; 15(12): e0244224, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33347483

RESUMEN

Fenghuang Dancong tea covers the oolong tea category and is widely acknowledged for its unique floral and honey flavor. In order to characterize the volatile components in nine different aroma types of Fenghuang Dancong tea, the Headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC- MS) were employed. In addition, the similarity analysis and cluster analysis (CA) were performed to compare the aroma characteristics and establish the correlation between the nine types of teas. The principal component analysis (PCA) and orthogonal partial least squares discrimination analysis (OPLS-DA) method were employed to determine the volatile components with a high contribution to the overall aroma of each type of tea. The results presented a total of 122 volatile aroma components including 24 kinds of alcohol, 23 kinds of esters, 15 kinds of olefins, 12 kinds of aldehydes, 12 kinds of ketones, 13 kinds of alkanes and 23 kinds of other components from the nine types of Fenghuang Dancong tea. Of these volatile aroma components, 22 types were common with linalool, dehydrolinalool, linalool oxide I, linalool oxide II, etc. The similarity of the nine types of Fenghuang Dancong tea was found between 46.79% and 95.94%. The CA indicated that the nine types of Fenghuang Dancong tea could be clustered into four categories when the ordinate distance reached to 10. The PCA demonstrated that decane, octadecane, 2,2,4,6,6-pentamethylheptane, dehydrolinalool, geraniol and nerol were the important aroma components to Fenghuang Dancong Tea. OPLS-DA proved that 2,2,4,6,6-pentamethylheptane, dehydrolinalool, phenylacetaldehyde, nerolidol, linalool oxide I and hexanal were the key differential compounds between the various types of tea samples. This study provides a theoretical basis for characterizing the volatile aroma components in the main types of Fenghuang Dancong tea as well as the similarity and correlation between various types of Fenghuang Dancong tea.


Asunto(s)
Odorantes , Té/química , Compuestos Orgánicos Volátiles/química , Cromatografía de Gases y Espectrometría de Masas , Extracción en Fase Sólida , Té/clasificación , Compuestos Orgánicos Volátiles/análisis
18.
Front Genet ; 11: 617174, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33679869

RESUMEN

For lung adenocarcinoma (LUAD), patients of different stages have strong heterogeneity, and their overall prognosis varies greatly. Thus, exploration of novel biomarkers to better clarify the characteristics of LUAD is urgent. Multi-omics information of LUAD patients were collected form TCGA. Three independent LUAD cohorts were obtained from gene expression omnibus (GEO). A multi-omics correlation analysis of METTL5 was performed in TCGA dataset. To build a METTL5-associated prognostic score (MAPS). Spathial and random forest methods were first applied for feature selection. Then, LASSO was implemented to develop the model in TCGA cohort. The prognostic value of MAPS was validated in three independent GEO datasets. Finally, functional annotation was conducted using gene set enrichment analysis (GSEA) and the abundances of infiltrated immune cells were estimated by ImmuCellAI algorithm. A total of 901 LUAD patients were included. The expression of METTL5 in LUAD was significantly higher than that in normal lung tissue. And high expression of METTL5 indicated poor prognosis in all different stages (P < 0.001, HR = 1.81). Five genes (RAC1, C11of24, METTL5, RCCD1, and SLC7A5) were used to construct MAPS and MAPS was significantly correlated with poor prognosis (P < 0.001, HR = 2.15). Furthermore, multivariate Cox regression analysis suggested MAPS as an independent prognostic factor. Functional enrichment revealed significant association between MAPS and several immune components and pathways. This study provides insights into the potential significance of METTL5 in LUAD and MAPS can serve as a promising biomarker for LUAD.

19.
Front Oncol ; 9: 1123, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31750240

RESUMEN

Background: The identification of prognostic markers for non-small-cell lung carcinoma (NSCLC) is needed for clinical practice. The metabolism-reprogramming marker ketohexokinase (KHK)-A and acetyl-CoA synthetase 2 (ACSS2) phosphorylation at S659 (ACSS2 pS659) play important roles in tumorigenesis and tumor development. However, the clinical significance of KHK-A and ACSS2 pS659 in NSCLC is largely unknown. Methods: The expression levels of KHK-A and ACSS2 pS659 were assessed by immunohistochemistry analyses of surgical specimens from 303 NSCLC patients. The prognostic values of KHK-A and ACSS2 pS659 were evaluated by Kaplan-Meier methods and Cox regression models. Results: The expression levels of KHK-A and ACSS2 pS659 were significantly higher in NSCLC tissues than those in adjacent non-tumor tissues (P < 0.0001). KHK-A or ACSS2 pS659 alone and the combination of KHK-A and ACSS2 pS659 were inversely correlated with overall survival in NSCLC patients (P < 0.001). The multivariate analysis indicated that KHK-A or ACSS2 pS659 and KHK-A/ACSS2 pS659 were independent prognostic biomarkers for NSCLC (P = 0.008 for KHK-A, P < 0.001 for ACSS2 pS659, and P < 0.001 for KHK-A/ACSS2 pS659). Furthermore, the combination of KHK-A and ACSS2 pS659 can be used as a prognostic indicator for all stages of NSCLC. Conclusions: KHK-A or ACSS2 pS659 alone and the combination of KHK-A and ACSS2 pS659 can be used as prognostic markers for NSCLC. Our findings highlight the important role of metabolic reprogramming in NSCLC progression.

20.
Cancer Commun (Lond) ; 39(1): 54, 2019 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-31578148

RESUMEN

BACKGROUND: Cancer cells reprogram metabolism for proliferation. Phosphoglycerate kinase 1 (PGK1), as a glycolytic enzyme and newly identified protein kinase, coordinates glycolysis and mitochondrial metabolism. However, the clinical significance of PGK1 expression and function in cancer progression is unclear. Here, we investigated the relationship between the progression and prognosis of multiple cancer types and PGK1 expression and its function in the mitochondrial metabolism regulation. METHODS: We performed pan-cancer analyses of PGK1 mRNA level and DNA methylation in 11,908 tumor tissues and 1582 paired normal tissues across 34 cancer types in The Cancer Genome Atlas datasets. Using specific antibodies against PGK1 S203 and PDHK1 T338 phosphorylation, we performed immunohistochemistry with tissue microarray assay in additional 818 cancer cases with 619 paired normal tissues from five cancer types. RESULTS: The PGK1 mRNA level was significantly elevated with hypomethylation in promotor regions and associated with advanced TNM stage in 15 and four cancer types, respectively. In breast carcinoma, elevated PGK1 mRNA level and promoter hypomethylation were associated with poor prognosis. Positively correlated PGK1 S203 and PDHK1 T338 phosphorylation levels were significantly associated with short overall survival (OS) in cancers of the breast, liver, lung, stomach, and esophagus and with advanced TNM stage in breast and esophageal cancers. PGK1 pS203 and PDHK1 pT338 were also independent predictors of short OS in liver, lung, and stomach cancer. CONCLUSIONS: The elevated expression, promoter hypomethylation, and phosphorylation of PGK1 and PDHK1 were related with disease progression and short OS in diverse types of cancer. PGK1 and PDHK1 phosphorylation may be potential prognostic biomarkers.


Asunto(s)
Metilación de ADN , Neoplasias/genética , Fosfoglicerato Quinasa/genética , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/genética , Progresión de la Enfermedad , Humanos , Isoenzimas/genética , Estadificación de Neoplasias , Neoplasias/patología , Fosforilación , Pronóstico , Regiones Promotoras Genéticas , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...