Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(3)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38338477

RESUMEN

The photoelectrochemical cells (PECs) performing high-efficiency conversions of solar energy into both electricity and high value-added chemicals are highly desirable but rather challenging. Herein, we demonstrate that a PEC using the oxidatively electropolymerized film of a heteroleptic Ru(II) complex of [Ru(bpy)(L)2](PF6)2Ru1 {bpy and L stand for 2,2'-bipyridine and 1-phenyl-2-(4-vinylphenyl)-1H-imidazo[4,5-f][1,10]phenanthroline respectively}, polyRu1, as a working electrode performed both efficient in situ synthesis of hydrogen peroxide and photocurrent generation/switching. Specifically, when biased at -0.4 V vs. saturated calomel electrode and illuminated with 100 mW·cm-2 white light, the PEC showed a significant cathodic photocurrent density of 9.64 µA·cm-2. Furthermore, an increase in the concentrations of quinhydrone in the electrolyte solution enabled the photocurrent polarity to switch from cathodic to anodic, and the anodic photocurrent density reached as high as 11.4 µA·cm-2. Interestingly, in this single-compartment PEC, the hydrogen peroxide yield reached 2.63 µmol·cm-2 in the neutral electrolyte solution. This study will serve as a guide for the design of high-efficiency metal-complex-based molecular systems performing photoelectric conversion/switching and photoelectrochemical oxygen reduction to hydrogen peroxide.

2.
J Phys Chem Lett ; 14(32): 7165-7172, 2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37540129

RESUMEN

Room-temperature phosphorescent (RTP) based long-afterglow materials have shown broad application prospects in smart sensors, biological imaging, photodynamic therapy, and many others. However, the fabrication of red long-afterglow materials still faces a great challenge due to the competitive relationship between RTP efficiency and lifetime. In this work, we reported a series of layered double hydroxide (LDHs) nanosheets with red long-afterglow (quantum yield up to 42.35% and lifetime up to 256.77 ms) by taking advantage of the highly efficient triplet-triplet energy transfer from green phosphorescent LDHs to the red fluorescent dye rhodamine B (RhB, as a guest molecule). Specifically, the Zn-based LDHs@RhB composite (Zn-Al-LDH-4-CBBA@RhB) presents energy transfer efficiency as high as 95.18%, and the red long-afterglow could even be excited upon white-light irradiation. Benefiting from the time-resolved afterglow, the LDHs@RhB composites exhibit great potential in the fields of anticounterfeiting and information encryption.

3.
FASEB J ; 37(7): e22983, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37249327

RESUMEN

In mammals, the endometrium undergoes dynamic changes in response to estrogen and progesterone to prepare for blastocyst implantation. Two distinct types of endometrial epithelial cells, the luminal (LE) and glandular (GE) epithelial cells play different functional roles during this physiological process. Previously, we have reported that Notch signaling plays multiple roles in embryo implantation, decidualization, and postpartum repair. Here, using the uterine epithelial-specific Ltf-iCre, we showed that Notch1 signaling over-activation in the endometrial epithelium caused dysfunction of the epithelium during the estrous cycle, resulting in hyper-proliferation. During pregnancy, it further led to dysregulation of estrogen and progesterone signaling, resulting in infertility in these animals. Using 3D organoids, we showed that over-activation of Notch1 signaling increased the proliferative potential of both LE and GE cells and reduced the difference in transcription profiles between them, suggesting disrupted differentiation of the uterine epithelium. In addition, we demonstrated that both canonical and non-canonical Notch signaling contributed to the hyper-proliferation of GE cells, but only the non-canonical pathway was involved with estrogen sensitivity in the GE cells. These findings provided insights into the effects of Notch1 signaling on the proliferation, differentiation, and function of the uterine epithelium. This study demonstrated the important roles of Notch1 signaling in regulating hormone response and differentiation of endometrial epithelial cells and provides an opportunity for future studies in estrogen-dependent diseases, such as endometriosis.


Asunto(s)
Progesterona , Útero , Animales , Femenino , Ratones , Embarazo , Proliferación Celular , Implantación del Embrión/fisiología , Endometrio/metabolismo , Epitelio/metabolismo , Estrógenos/farmacología , Estrógenos/metabolismo , Progesterona/farmacología , Progesterona/metabolismo , Útero/metabolismo
4.
Molecules ; 28(7)2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37049999

RESUMEN

A novel Re (I) complex of [Re(CO)3Cl(L)], {L = 2-([2,2'-bithiophen]-5-yl)-1-phenyl-1H-imidazo [4,5-f][1,10]phenanthroline}, was synthesized, and its optical (UV-Visible absorption and emission spectroscopy), cyclovoltammetric and photoelectrochemical oxygen reduction properties were studied. The geometric and electronic properties were also investigated by density functional theory calculations. It was found that the ITO electrode coated with drop-casted [Re(CO)3Cl(L)] film exhibited cathodic photocurrent generation characteristics. The illuminated film exhibited a maximum cathodic photocurrent up to 30.4 µA/cm2 with an illumination intensity of 100 mW/cm2 white light at a bias potential of -0.4 V vs. SCE in O2-saturated electrolyte solution, which was reduced by 5.1-fold when thoroughly deoxygenated electrolyte solution was used, signaling that the electrode performed well on the photoelectrochemical oxygen reduction. The photo-electrocatalytic hydrogen peroxide production was proved with a maximum H2O2 concentration of 6.39 µM during 5 h of the photoelectrocatalytic process. This work would guide the construction of more efficient rhenium-based photo(electro)catalytic molecular systems for O2 sensing, hydrogen peroxide production and other types of photoelectrochemical energy conversion and storage.

5.
Nat Commun ; 14(1): 1654, 2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-36964159

RESUMEN

The fabrication of chiral molecules into macroscopic systems has many valuable applications, especially in the fields of optical displays, data encryption, information storage, and so on. Here, we design and prepare a serious of supramolecular glasses (SGs) based on Zn-L-Histidine complexes, via an evaporation-induced self-assembly (EISA) strategy. Metal-ligand interactions between the zinc(II) ion and chiral L-Histidine endow the SGs with interesting circularly polarized afterglow (CPA). Multicolored CPA emissions from blue to red with dissymmetry factor as high as 9.5 × 10-3 and excited-state lifetime up to 356.7 ms are achieved under ambient conditions. Therefore, this work not only communicates the bulk SGs with wide-tunable afterglow and large circular polarization, but also provides an EISA method for the macroscopic self-assembly of chiral metal-organic hybrids toward photonic applications.

6.
Reprod Sci ; 30(6): 1867-1877, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36581776

RESUMEN

The uterine luminal epithelium, glandular epithelium, and stromal cells are vital for the establishment of pregnancy. Previously studies have shown various methods to isolate mouse uterine epithelium and stromal cells, including laser capture microdissection (LCM), enzyme digestion, and immunomagnetic beads. Despite the importance of the endometrial epithelium as the site of implantation and nutritional support for the conceptus, there is no isolated method to separate the luminal epithelium and glandular epithelium. Here, we establish a novel enzyme-based way to separate two types of epithelium and keep their viability. In this article, we analyzed their purity by mRNA level, immunostaining, and transcriptome analysis. Our isolation method revealed several unstudied luminal and glandular epithelial markers in transcriptome analysis. We further demonstrated the viability of the isolated epithelium by 2D and 3D cultures. The results showed that we successfully separated the endometrial luminal epithelium and glandular epithelium. We also provided an experimental model for the following study of the physiological function of the different parts of the uterus and related diseases.


Asunto(s)
Endometrio , Útero , Embarazo , Ratones , Animales , Femenino , Endometrio/fisiología , Implantación del Embrión/fisiología , Epitelio , ARN Mensajero
7.
ACS Appl Bio Mater ; 5(6): 2549-2555, 2022 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-35658412

RESUMEN

The development of photosensitizers with low oxygen dependence for generating type I ROS is in high demand to be able to treat pathogenic infections in hypoxic conditions. Here, we report a series of cationic bipolar hemicyanines (C3, C6, and C10) with alkyl linkers of varying lengths that are found to exclusively produce hydroxyl radicals and superoxide radicals with the aid of white light and that have different antibacterial abilities toward a variety of pathogens. Furthermore, hemicyanines could differentiate live from dead bacteria to track the status of pathogens in real time. It is expected that hemicyanines could be applied for combatting various microbial infections in hypoxia and real-time tracking.


Asunto(s)
Luz , Fármacos Fotosensibilizantes , Carbocianinas , Fármacos Fotosensibilizantes/farmacología , Esterilización
8.
Dalton Trans ; 50(12): 4219-4230, 2021 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-33687405

RESUMEN

Three cyclometalated diruthenium complexes bridged by 3,3',5,5'-tetrakis(benzimidazol-2-yl)biphenyl (H-tbibp) and capped with different terminal ligands have been synthesized and examined. In addition, two monoruthenium complexes with H-tbibp have been prepared for the purpose of comparison studies. The degree of Ru-Ru electronic coupling of these diruthenium complexes has been investigated by electrochemical and intervalence charge-transfer (IVCT) analyses. These results suggest that when the same or similar terminal ligands are used, the strength of H-tbibp in mediating the Ru-Ru coupling is enhanced with respect to that of the previously reported bridging ligand 3,3',5,5'-tetrakis(N-methylbenzimidazol-2-yl)biphenyl, but it is slightly inferior to that of the classical bridging ligand 3,3',5,5'-tetrakis(pyrid-2-yl)biphenyl. This trend is also supported by CNS analyses based on the hole-superexchange mechanism. In addition, DFT calculations have been performed to probe the spin density distributions of the singly-oxidized diruthenium complexes with H-tbibp and TDDFT calculations are used to reproduce the IVCT transitions.

9.
Biol Reprod ; 104(3): 539-547, 2021 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-33284968

RESUMEN

The endometrium undergoes a pregnancy-delivery-repair cycle multiple times during the reproductive lifespan in females. Decidualization is one of the critical events for the success of this essential process. We have previously reported that Notch1 is essential for artificial decidualization in mice. However, in a natural pregnancy, the deletion of Notch1 (PgrCre/+Notch1f/f, or Notch1d/d) only affects female fertility in the first 30 days of a 6-month fertility test, but not the later stages. In the present study, we undertook a closer evaluation at the first pregnancy of these mice to attempt to understand this puzzling phenomenon. We observed a large number of pregnancy losses in Notch1d/d mice in their first pregnancy, which led to the subfertility observed in the first 30 days of the fertility test. We then demonstrated that the initial pregnancy loss is a consequence of impaired decidualization. Furthermore, we identified a group of genes that contribute to Notch1 regulated decidualization in a natural pregnancy. Gene ontogeny analysis showed that these differentially expressed genes in the natural pregnancy are involved in cell-cell and cell-matrix interactions, different from genes that have been previously identified from the artificial decidualization model, which contribute to cell proliferation and apoptosis. In summary, we determined that Notch1 is essential for normal decidualization in the mouse uterus only in the first pregnancy but not in subsequent ones.


Asunto(s)
Decidua/fisiología , Regulación de la Expresión Génica/fisiología , Preñez , Receptor Notch1/metabolismo , Aborto Veterinario/genética , Animales , Proliferación Celular , Implantación del Embrión/genética , Femenino , Ratones , Ratones Noqueados , Embarazo , Preñez/genética , Preñez/metabolismo , Receptor Notch1/genética , Transducción de Señal , Transcriptoma
10.
Chem Commun (Camb) ; 56(39): 5267-5270, 2020 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-32270802

RESUMEN

Three one-dimensional (1D) chain polymers (1D-9HAC, 1D-Cd-9AC, and 1D-Cd-9AC-HBIM) that exhibit different intermolecular interactions and stacking patterns have been designed and synthesized. Only 1D-Cd-9AC-HBIM with rigid (anion) and flexible (cation) units alternately arranged exhibits mechanochromic luminescence, which can be recovered through rapid solvent treatment or a self-recovery process.

11.
ACS Appl Bio Mater ; 3(8): 5420-5427, 2020 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-35021715

RESUMEN

A dinuclear Ru(II) complex of [(bpy)2Ru(Hdip)Ru(H2bip)](ClO4)4 {bpy is 2,2'-bipyridine, Hdip is 2-(2,6-di(pyridin-2-yl)-pyridin-4-yl)-1H-imidazo[4,5-f]-[1,10]phenanthroline, and H2bip is 2,6-bis(imidazole-2-yl)-pyridine} was synthesized and characterized by elemental analysis, mass spectrometry, and 1H NMR spectroscopy. Spectrophotometric pH titrations in aqueous buffer and in vitro cell experiments indicated the response ability of the complex to pH fluctuations in the physiological pH range (6.0-8.0). The complex was found to be capable of differentiating live HeLa cells from healthy HEK293 cells by selectively accumulating in lysosomes of the HeLa cells. The low cytotoxicity (IC50 > 100 µM), a large Stokes shift (∼200 nm), strong near-IR emission at ∼700 nm, a relatively long excited state lifetime, high photostability, and solubility make this complex considerably promising in real-time tracking and visualization of lysosomes in live cells. More interestingly, the tumor cell-specific two-photon luminescent imaging properties also endow this Ru complex with potential for applications in high-resolution tumor imaging and luminescence-guided tumor resection.

12.
Artículo en Inglés | MEDLINE | ID: mdl-31566116

RESUMEN

DNA groove binders have been poorly studied as compared to the intercalators. A novel Ru(II) complex of [Ru(aeip)2(Haip)](PF6)2 {Haip = 2-(9-anthryl)-1H-imidazo[4,5-f][1,10]phenanthroline and aeip = 2-(anthracen-9-yl)-1-ethyl-imidazo[4,5-f][1, 10]phenanthroline} is synthesized and characterized by elemental analysis, 1H NMR spectroscopy and mass spectrometry. The complex is evidenced to be a calf-thymus DNA groove binder with a large intrinsic binding constant of 106 M-1 order of magnitude as supported by UV-visible absorption spectral titrations, salt effects, DNA competitive binding with ethidium bromide, DNA melting experiment, DNA viscosity measurements and density functional theory calculations. The acid-base properties of the complex studied by UV-Vis spectrophotometric titrations are reported as well.


Asunto(s)
Complejos de Coordinación/química , Rutenio/química , Animales , Unión Competitiva , Bovinos , Complejos de Coordinación/síntesis química , ADN/química , Etidio/química , Concentración de Iones de Hidrógeno , Estructura Molecular , Desnaturalización de Ácido Nucleico , Viscosidad
13.
Curr Med Chem ; 27(22): 3735-3752, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-30501596

RESUMEN

Ruthenium complexes have stood out by several mononuclear complexes which have entered into clinical trials, such as imidazolium [trans-RuCl4(1H-imidazole)(DMSO-S)] (NAMI-A) and ([Ru(II)(4,4'-dimethyl-2,2'-bipyridine)2-(2(2'-,2'':5'',2'''-terthiophene)-imidazo[4,5-f] [1,10]phenanthroline)] 2+) (TLD-1433), opening a new avenue for developing promising ruthenium-based anticancer drugs alternative to Cisplatin. Polynuclear ruthenium complexes were reported to exhibit synergistic and/or complementary effects: the enhanced DNA structural recognition and DNA binding as well as in vitro anticancer activities. This review overviews some representative polynuclear ruthenium complexes acting as DNA structural probes, DNA binders and in vitro anticancer agents, which were developed during last decades. These complexes are reviewed according to two main categories of homo-polynuclear and hetero-polynuclear complexes, each of which is further clarified into the metal centers linked by rigid and flexible bridging ligands. The perspective, challenges and future efforts for investigations into these exciting complexes are pointed out or suggested.


Asunto(s)
Antineoplásicos/química , ADN , Sondas de ADN , Compuestos Organometálicos , Rutenio
14.
Inorg Chem ; 58(20): 14244-14259, 2019 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-31595752

RESUMEN

Near-IR-emitting and/or efficiently photodynamic water-soluble Ru(II) complexes that hold great application potentials as photodynamic therapy and/or photodetection agents for cancers have been poorly explored. In this paper, the solvatochromism, calf thymus DNA binding, and singlet oxygen generation properties of a known ruthenium(II) complex of visible-emitting [Ru(bpy)2(dtdpq)](ClO4)2 (Ru1) and a new homoleptic complex of near-IR-emitting [Ru(dtdpq)3](ClO4)2 (Ru2) (bpy = 2,2'-bipyridine, dtdpq = 2,3-bis(thiophen-2-yl)pyrazino[2,3-f][1,10]phenanothroline) in water are reported. Moreover, DNA photocleavage, singlet oxygen generation in HeLa cells, cellular uptake/localization, and in vitro photodynamic therapy for cancer cells of water-soluble Ru1 are described in detail. The results show that Ru1 acted as potent photodynamic cancer therapy and mitochondrial imaging agents. Ru2 exhibited very strong solvatochromism from a visible emission maximum at 588 nm in CH2Cl2 to the near-IR region at 700 nm in water and singlet oxygen generation yield in water (23%) and DNA binding properties (intercalative DNA binding constant on the order of 106 M-1) comparable to those of Ru1, which should make Ru2 attractive for the aforementioned applications of Ru1 if the water solubility of Ru2 can be improved enough for the studies above.


Asunto(s)
Antineoplásicos/farmacología , Complejos de Coordinación/farmacología , ADN de Neoplasias/efectos de los fármacos , Luz , Fotoquimioterapia , Rutenio/farmacología , Tiofenos/farmacología , Células A549 , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Sitios de Unión/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Complejos de Coordinación/síntesis química , Complejos de Coordinación/química , Células HeLa , Humanos , Rayos Infrarrojos , Células MCF-7 , Estructura Molecular , Oxígeno/análisis , Oxígeno/metabolismo , Rutenio/química , Tiofenos/química
15.
Langmuir ; 35(39): 12620-12629, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31500421

RESUMEN

The electropolymerized films of poly(L)n on an indium-tin oxide (ITO) electrode was prepared by anodic electrooxidation of a dichloromethane solution of a triphenylamine-carrying organic molecule L and were characterized/studied by ultraviolet-visible absorption spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, electrochemical impedance spectroscopy, cyclic voltammetry, and photoelectrochemical measurements. Poly(L)n films were found to show surface-controlled TPA•+1/0 associated quasi-reversible redox and exceptionally high photocurrent generation properties. At a zero external bias potential and under 100 mW/cm2 white light irradiation, a photoelectrochemical device composed of a poly(L)1-modified ITO as the working electode, a platinum disk counter electrode, and saturated calomel electrode reference electrode in a 0.1 M Na2SO4 aqueous solution exhibited a significant cathode photocurrent density of 2.2 µA/cm2, which could be switched to be anodic and outperform most previously reported molecule-based modified ITO electrodes under similar experimental conditions. The results indicate that poly(L)n films offer a number of future perspectives ranging from organic photovoltaic to photoelectrochemical catalysis and sensing.

16.
Mater Sci Eng C Mater Biol Appl ; 99: 657-668, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30889739

RESUMEN

Graphene quantum dot-covalently appended terpyridine, GQDs-tpy, was synthesized and characterized by X-ray photoelectron spectroscopy, FTIR spectroscopy and transmission electron microscopy. GQDs-tpy was found to act as multifunctional chemosensors: a highly selective colorimetric chemosensor for Fe2+ as evidenced by an obvious color change from colorless to pink, and a typical fluorescence enhanced probe for Zn2+ over 13 metal cations even in practical water samples. Moreover, two-input XOR, INHIBIT and IMPICATION logic gates as well as four-input OR and NOR logic gates were constructed according to the characteristic responses of GQDs-tpy to a sequence of cations.


Asunto(s)
Grafito/química , Lógica , Piridinas/química , Puntos Cuánticos/química , Conformación Molecular , Fenómenos Ópticos
17.
Adv Sci (Weinh) ; 5(11): 1801187, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30479939

RESUMEN

Mechanochromic luminescent materials have attracted much attention and present a variety of applications in information security, data recording, and storage devices. However, most of these smart luminescent systems are based on typical fluorescence and/or phosphorescence mechanisms; the mechanochromic delayed fluorescence (MCDF) materials involving switching singlet and triplet states are rarely studied to date. Herein, new 2D layered metal-organic micro/nanosheets, [Cd(9-AC)2(BIM)2] (named as MCDF-1; 9-AC = anthracene-9-carboxylate and BIM = benzimidazole) and its solvate form containing interlayer CH3CN (named as MCDF-2), which exhibit reversible mechanochromic delayed fluorescence characteristics, are presented. With applying the mechanical force, the luminescent center of MCDF-1 can be converted from 9-AC/BIM exciplex to 9-AC/9-AC excimer, resulting in alternations of delayed fluorescence. Such luminescent change can be further recovered by CH3CN fumigation, accompanied by the structural transformation from MCDF-1 to MCDF-2. Furthermore, the force-responsive process also refers to the energy redistribution between singlet and triplet states as inferred by both temperature-dependent photophysics and theoretical calculations. Therefore, this work not only develops new 2D micro/nanosheets as MCDF materials, but also supplies a singlet-triplet energy switching mechanism on their reversible mechanochromic process.

18.
Chem Commun (Camb) ; 53(55): 7752-7755, 2017 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-28650049

RESUMEN

Lanthanide ion doped coordination polymers (CPs) exhibit an unusual red/green afterglow with long photoemission lifetimes (10.54 ms for Eu3+ and 57.66 ms for Tb3+) due to the phosphorescence energy transfer at room temperature.

19.
Inorg Chem ; 56(9): 4775-4779, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-28387505

RESUMEN

The pH-switchable room-temperature near-infrared (NIR) phosphorescence emission based on ruthenium(II) polypyridyl complexes has been very rarely reported, even though it is very desirable for applications in sensing, switching, and logic molecular devices and bioimaging. Here we report a novel dinuclear ruthenium(II) complex in an aerated acetonitrile solution featuring a bright NIR emission centered at 760 nm with an absolute quantum yield of 1.03%, a large Stokes shift of 254 nm, and a long emission lifetime of 108.3 ± 0.4 ns. The complex in a Britton-Roberson buffer also exhibited pH-induced "off-on-off" NIR luminescent switches with a maximum intensity enhancement factor of 41 and one of the switching events occurring near the physiological pH range.

20.
ACS Appl Mater Interfaces ; 9(20): 17399-17407, 2017 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-28441860

RESUMEN

In this work, we propose that lanthanide cations (such as Eu3+ and Tb3+)-doped long-afterglow coordination polymers (CPs) can be an effective tool for designing multimode optical logic gates based on their tunable fluorescence/phosphorescence transformation and state-dependent emission. First, multicolor and white-light luminescence across the blue/green/yellow/red visible regions can be obtained by balancing the co-doping ratio of Eu3+/Tb3+ cations and suitable excitations. Additionally, a new tribochromic Eu-Cd-CP was developed based on the mechanism of a change in structural symmetry. Benefitting from long-afterglow, tribochromism, and excitation-dependent emission on the same luminescent CP, a new three-input and three-output logic gate was obtained. Therefore, this work not only provides detailed insights into the interesting fields of tribochromism and tunable photoemission, but also confirms that long-afterglow CPs can serve as a new platform for the construction of smart luminescent systems and multimode optical logic gates.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...