Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Food Chem ; 394: 133538, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-35759841

RESUMEN

Mislabelling the geographic origin of same-species aquaculture products is difficult to identify. This study applied untargeted small-molecule fingerprinting to discriminating between Atlantic salmon originating from Chile and Norway. The acquired liquid chromatography-high-resolution mass spectrometry data from Chilean (n = 32) and Norwegian (n = 29) salmon were chemometrically processed. The partial least squares discriminant analysis (PLS-DA) models successfully discriminated between Chilean and Norwegian salmon at both positive and negative ionisation modes (R2 > 0.96, Q2 > 0.81). Univariate analyses facilitated the selection of approximately 100 candidate markers with high statistical confidence (> 95%). Of these, 37 confirmed markers of Chilean and Norwegian salmon were primarily associated with feed formulations, including lipid derivatives and feed additives. None of the markers were residues or contaminants of potential food safety concern.


Asunto(s)
Salmo salar , Animales , Acuicultura , Cromatografía Liquida , Inocuidad de los Alimentos , Alimentos Marinos/análisis
2.
IEEE Comput Graph Appl ; 42(3): 41-52, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35471878

RESUMEN

Cosmologists often build a mathematics simulation model to study the observed universe. However, running a high-fidelity simulation is time consuming and thus can inconvenience the analysis. This is especially so when the analysis involves trying out a large number of simulation input parameter configurations. Therefore, selecting an input parameter configuration that can meet the needs of an analysis task has become an important part of the analysis process. In this work, we propose an interactive visual system that efficiently helps users understand the parameter space related to their cosmological data. Our system utilizes a GAN-based surrogate model to reconstruct the simulation outputs without running the expensive simulation. We also extract information learned by the deep neural-network-based surrogate models to facilitate the parameter space exploration. We demonstrate the effectiveness of our system via multiple case studies. These case study results demonstrate valuable simulation input parameter configuration and subregion analyses.

3.
IEEE Trans Vis Comput Graph ; 26(11): 3299-3313, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31170075

RESUMEN

The analysis and visualization of data created from simulations on modern supercomputers is a daunting challenge because the incredible compute power of modern supercomputers allow scientists to generate datasets with very high spatial and temporal resolutions. The limited bandwidth and capacity of networking and storage devices connecting supercomputers to analysis machines become the major bottleneck for data analysis such that simply moving the whole dataset from the supercomputer to a data analysis machine is infeasible. A common approach to visualize high temporal resolution simulation datasets under constrained I/O is to reduce the sampling rate in the temporal domain while preserving the original spatial resolution at the time steps. Data interpolation between the sampled time steps alone may not be a viable option since it may suffer from large errors, especially when using a lower sampling rate. We present a novel ray-based representation storing ray based histograms and depth information that recovers the evolution of volume data between sampled time steps. Our view-dependent proxy allows for a good trade off between compactly representing the time-varying data and leveraging temporal coherence within the data by utilizing interpolation between time steps, ray histograms, depth information, and codebooks. Our approach is able to provide fast rendering in the context of transfer function exploration to support visualization of feature evolution in time-varying data.

4.
IEEE Trans Vis Comput Graph ; 26(1): 23-33, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31425097

RESUMEN

We propose InSituNet, a deep learning based surrogate model to support parameter space exploration for ensemble simulations that are visualized in situ. In situ visualization, generating visualizations at simulation time, is becoming prevalent in handling large-scale simulations because of the I/O and storage constraints. However, in situ visualization approaches limit the flexibility of post-hoc exploration because the raw simulation data are no longer available. Although multiple image-based approaches have been proposed to mitigate this limitation, those approaches lack the ability to explore the simulation parameters. Our approach allows flexible exploration of parameter space for large-scale ensemble simulations by taking advantage of the recent advances in deep learning. Specifically, we design InSituNet as a convolutional regression model to learn the mapping from the simulation and visualization parameters to the visualization results. With the trained model, users can generate new images for different simulation parameters under various visualization settings, which enables in-depth analysis of the underlying ensemble simulations. We demonstrate the effectiveness of InSituNet in combustion, cosmology, and ocean simulations through quantitative and qualitative evaluations.

5.
IEEE Trans Vis Comput Graph ; 26(1): 34-44, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31425114

RESUMEN

Complex computational models are often designed to simulate real-world physical phenomena in many scientific disciplines. However, these simulation models tend to be computationally very expensive and involve a large number of simulation input parameters, which need to be analyzed and properly calibrated before the models can be applied for real scientific studies. We propose a visual analysis system to facilitate interactive exploratory analysis of high-dimensional input parameter space for a complex yeast cell polarization simulation. The proposed system can assist the computational biologists, who designed the simulation model, to visually calibrate the input parameters by modifying the parameter values and immediately visualizing the predicted simulation outcome without having the need to run the original expensive simulation for every instance. Our proposed visual analysis system is driven by a trained neural network-based surrogate model as the backend analysis framework. In this work, we demonstrate the advantage of using neural networks as surrogate models for visual analysis by incorporating some of the recent advances in the field of uncertainty quantification, interpretability and explainability of neural network-based models. We utilize the trained network to perform interactive parameter sensitivity analysis of the original simulation as well as recommend optimal parameter configurations using the activation maximization framework of neural networks. We also facilitate detail analysis of the trained network to extract useful insights about the simulation model, learned by the network, during the training process. We performed two case studies, and discovered multiple new parameter configurations, which can trigger high cell polarization results in the original simulation model. We evaluated our results by comparing with the original simulation model outcomes as well as the findings from previous parameter analysis performed by our experts.


Asunto(s)
Gráficos por Computador , Modelos Biológicos , Redes Neurales de la Computación , Levaduras/citología , Biología Computacional , Levaduras/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...