Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem Lett ; 13(40): 9309-9315, 2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36178160

RESUMEN

Ultrafast molecular dynamics in fluids is of great importance in many biological and chemical systems. Although such dynamics in bulk liquids has been explored by various methods, experimental tools that unveil the dynamics of solvated solutes are limited. In this work, we have developed resonant optical Kerr effect spectroscopy (ROKE), which is an analogue of optical Kerr effect spectroscopy that measures the reorientational relaxation of a dilute solute in solution. By adjusting the pump and probe wavelengths at the resonant absorption band of a solute, the time response of the solute was distinguished easily from the negligible signal of the solvent. The heterodyne detection of ROKE enables the determination of reorientational relaxation time constants with an accuracy of 2.6%. The signal-to-noise ratio was high enough (average ∼26.7) to obtain an adequate signal from even a 10 µM solution. Thus, ROKE is a powerful tool to study solute dynamics with high sensitivity in a broad range of applications.


Asunto(s)
Soluciones , Soluciones/química , Solventes/química , Análisis Espectral
2.
Sci Adv ; 8(10): eabn2225, 2022 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-35275715

RESUMEN

Organic light-emitting devices are key components for emerging opto- and nanoelectronics applications including health monitoring and smart displays. Here, we report a foldable inverted polymer light-emitting diode (iPLED) based on a self-suspended asymmetrical vertical nanoscaffold replacing the conventional sandwich-like structured LEDs. Our empty vertical-yet-open nanoscaffold exhibits excellent mechanical robustness, proven by unaltered leakage current when applying 1000 cycles of 40-kilopascal pressure loading/unloading, sonication, and folding, with the corresponding iPLEDs displaying a brightness as high as 2300 candela per square meter. By using photolithography and brush painting, arbitrary emitting patterns can be generated via a noninvasive and mask-free process with individual pixel resolution of 10 µm. Our vertical nanoscaffold iPLED can be supported on flexible polyimide foils and be recycled multiple times by washing and refilling with a different conjugated polymer capable of emitting light of different color. This technology combines the traits required for the next generation of high-resolution flexible displays and multifunctional optoelectronics.

3.
Nano Lett ; 22(2): 702-709, 2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-34994573

RESUMEN

Strong coupling provides a powerful way to modify the nonlinear optical properties of materials. The coupling strength of the state-of-the-art strongly coupled systems is restricted by a weak-field confinement of the cavity, which limits the enhancement of the optical nonlinearity. Here, we investigate a strong coupling between Mie resonant modes of high-index dielectric nanocavities and an epsilon-near-zero mode of an ultrathin indium tin oxide film and obtain an anticrossing splitting of 220 meV. Static nonlinear optical measurements reveal a large enhancement in the intensity-independent effective optical nonlinear coefficients, reaching more than 3 orders of magnitude at the coupled resonance. In addition, we observe a transient response of ∼300 fs for the coupled system. The ultrafast and large optical nonlinear coefficients presented here offer a new route towards strong coupling-assisted high-speed photonics.

4.
Nat Commun ; 12(1): 3667, 2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34135338

RESUMEN

Organic photodetectors displaying efficient photoelectric response in the near-infrared are typically based on narrow bandgap active materials. Unfortunately, the latter require complex molecular design to ensure sufficient light absorption in the near-infrared region. Here, we show a method combining an unconventional device architecture and ad-hoc supramolecular self-assembly to trigger the emergence of opto-electronic properties yielding to remarkably high near-infrared response using a wide bandgap material as active component. Our optimized vertical phototransistors comprising a network of supramolecular nanowires of N,N'-dioctyl-3,4,9,10-perylenedicarboximide sandwiched between a monolayer graphene bottom-contact and Au nanomesh scaffold top-electrode exhibit ultrasensitive light response to monochromatic light from visible to near-infrared range, with photoresponsivity of 2 × 105 A/W and 1 × 102 A/W, at 570 nm and 940 nm, respectively, hence outperforming devices based on narrow bandgap materials. Moreover, these devices also operate as highly sensitive photoplethysmography tool for health monitoring.

5.
Nat Commun ; 12(1): 1486, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33674577

RESUMEN

Nonlinear optical responses provide a powerful way to understand the microscopic interactions between laser fields and matter. They are critical for plenty of applications, such as in lasers, integrated photonic circuits, biosensing and medical tools. However, most materials exhibit weak optical nonlinearities or long response times when they interact with intense optical fields. Here, we strongly couple the exciton of cyanine dye J-aggregates to an optical mode of a Fabry-Perot (FP) cavity, and achieve an enhancement of the complex nonlinear refractive index by two orders of magnitude compared with that of the uncoupled condition. Moreover, the coupled system shows an ultrafast response of ~120 fs that we extract from optical cross-correlation measurements. The ultrafast and large enhancement of the optical nonlinar coefficients in this work paves the way for exploring strong coupling effects on various third-order nonlinear optical phenomena and for technological applications.

6.
Angew Chem Int Ed Engl ; 59(26): 10436-10440, 2020 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-32220038

RESUMEN

It is well known that symmetry plays a key role in chemical reactivity. Here we explore its role in vibrational strong coupling (VSC) for a charge-transfer (CT) complexation reaction. By studying the trimethylated-benzene-I2 CT complex, we find that VSC induces large changes in the equilibrium constant KDA of the CT complex, reflecting modifications in the ΔG° value of the reaction. Furthermore, by tuning the microfluidic cavity modes to the different IR vibrations of the trimethylated benzene, ΔG° either increases or decreases depending only on the symmetry of the normal mode that is coupled. This result reveals the critical role of symmetry in VSC and, in turn, provides an explanation for why the magnitude of chemical changes induced by VSC are much greater than the Rabi splitting, that is, the energy perturbation caused by VSC. These findings further confirm that VSC is powerful and versatile tool for the molecular sciences.

7.
ScientificWorldJournal ; 2014: 103643, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24999489

RESUMEN

BACKGROUND AND AIM: Adipose derived mesenchymal stem cells (ADMSCs) may be an attractive source for acute and chronic liver injury because they are abundant and easy to obtain. We aim to investigate the efficacy of ADMSCs transplantation in the acute liver failure (ALF) caused by carbon tetrachloride (CCl4) in mice. METHODS: ADMSCs were isolated from inguinal fat pads of enhanced green fluorescent protein (EGFP) transgenic mice and their surface markers and differentiation potential were analyzed. ALF models were established by infusion of CCl4 and divided into two groups: control group; EGFP-ADMSCs transplantation group. The restoration of biological functions of the livers receiving transplantation was assessed via a variety of approaches such as survival rates, live function parameters, histological localization of EGFP-ADMSCs, and Immunofluorescence analysis. RESULTS: ADMSCs were positive for CD105, CD44 but negative for CD45, CD34 and had adipogenic, osteogenic differentiation potential. The survival rate of transplantation group significantly increased compared to PBS group. Furthermore, the transplanted cells were well integrated into injured livers and produced albumin, cytokeratin-18. CONCLUSION: Direct transplantation of ADMSCs is an effective treatment for ALF. The transplanted ADMSCs exhibit the potential to differentiate into hepatocyte-like cells in the injured livers.


Asunto(s)
Tejido Adiposo/citología , Tetracloruro de Carbono/toxicidad , Fallo Hepático Agudo/inducido químicamente , Fallo Hepático Agudo/terapia , Trasplante de Células Madre Mesenquimatosas/métodos , Adiposidad , Animales , Células Cultivadas , Receptores de Hialuranos/metabolismo , Integrina beta4/metabolismo , Queratina-18/metabolismo , Masculino , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
8.
Hepatology ; 56(1): 332-49, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22331624

RESUMEN

UNLABELLED: Elucidation of the molecular events underlying hepatic stellate cell (HSC) activation is an essential step toward understanding the biological properties of HSC and clarifying the potential roles of HSCs in liver fibrosis and other liver diseases, including hepatocellular carcinoma. High-throughput comparative proteomic analysis based on isobaric tags for relative and absolute quantitation (iTRAQ) labeling combined with online two-dimensional nanoscale liquid chromatography and tandem mass spectrometry (2D nano-LC-MS/MS) were performed on an in vitro HSC activation model to obtain a comprehensive view of the protein ensembles associated with HSC activation. In total, 2,417 proteins were confidently identified (false discovery rate <1%), of which 2,322 proteins were quantified. Compared with quiescent HSCs, 519 proteins showed significant differences in activated HSCs (≥ 3.0-fold). Bioinformatics analyses using Ingenuity Pathway Analysis revealed that the 319 up-regulated proteins represented multiple cellular functions closely associated with HSC activation, such as extracellular matrix synthesis and proliferation. In addition to the well-known markers for HSC activation, such as α-smooth muscle actin and collagen types 1 and 3, some novel proteins potentially associated with HSC activation were identified, while the 200 down-regulated proteins were primarily related to immune response and lipid metabolism. Most intriguingly, the top biological function, top network, and top canonical pathway of down-regulated proteins were all involved in immune responses. The expression and/or biological function of a set of proteins were properly validated, especially Bcl2-associated athanogene 2, BAG3, and B7H3. CONCLUSION: The present study provided the most comprehensive proteome profile of rat HSCs and some novel insights into HSC activation, especially the suppressed immune response.


Asunto(s)
Movimiento Celular , Proliferación Celular , Cirrosis Hepática/genética , Cirrosis Hepática/inmunología , Proteoma/genética , Análisis de Varianza , Animales , Western Blotting , Células Cultivadas , Modelos Animales de Enfermedad , Regulación hacia Abajo , Regulación de la Expresión Génica , Células Estrelladas Hepáticas/citología , Células Estrelladas Hepáticas/metabolismo , Terapia de Inmunosupresión , Cirrosis Hepática/patología , Masculino , Proteoma/metabolismo , Proteómica/métodos , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...