Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Korean J Physiol Pharmacol ; 28(3): 219-227, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38682170

RESUMEN

Bladder cancer remains the 10th most common cancer worldwide. In recent years, metformin has been found to have potential anti-bladder cancer activity while high concentration of IC50 at millimolar level is needed, which could not be reached by regular oral administration route. Thus, higher efficient agent is urgently demanded for clinically treating bladder cancer. Here, by conjugating artesunate to metformin, a novel artesunate-metformin dimer triazine derivative AM2 was designed and synthesized. The inhibitory effect of AM2 on bladder cancer cell line T24 and the mechanism underlying was determined. Anti-tumor activity of AM2 was assessed by MTT, cloning formation and wound healing assays. Decreasing effect of AM2 on lipogenesis was determined by oil red O staining. The protein expressions of Clusterin, SREBP1 and FASN in T24 cells were evaluated by Western blotting. The results show that AM2 significantly inhibited cell proliferation and migration at micromolar level, much higher than parental metformin. AM2 reduced lipogenesis and down-regulated the expressions of Clusterin, SREBP1 and FASN. These results suggest that AM2 inhibits the growth of bladder cancer cells T24 by inhibiting cellular lipogenesis associated with the Clusterin/SREBP1/FASN signaling pathway.

2.
ACS Appl Mater Interfaces ; 16(7): 9210-9223, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38330192

RESUMEN

Biology resolves design requirements toward functional materials by creating nanostructured composites, where individual components are combined to maximize the macroscale material performance. A major challenge in utilizing such design principles is the trade-off between the preservation of individual component properties and emerging composite functionalities. Here, polysaccharide pectin and silk fibroin were investigated in their composite form with pectin as a thermal-responsive ion conductor and fibroin with exceptional mechanical strength. We show that segregative phase separation occurs upon mixing, and within a limited compositional range, domains ∼50 nm in size are formed and distributed homogeneously so that decent matrix collective properties are established. The composite is characterized by slight conformational changes in the silk domains, sequestering the hydrogen-bonded ß-sheets as well as the emergence of randomized pectin orientations. However, most dominant in the composite's properties is the introduction of dense domain interfaces, leading to increased hydration, surface hydrophilicity, and increased strain of the composite material. Using controlled surface charging in X-ray photoelectron spectroscopy, we further demonstrate Ca ions (Ca2+) diffusion in the pectin domains, with which the fingerprints of interactions at domain interfaces are revealed. Both the thermal response and the electrical conductance were found to be strongly dependent on the degree of composite hydration. Our results provide a fundamental understanding of the role of interfacial interactions and their potential applications in the design of material properties, polysaccharide-protein composites in particular.


Asunto(s)
Fibroínas , Nanoestructuras , Seda/química , Fibroínas/química , Polisacáridos , Pectinas , Materiales Biocompatibles/química
3.
Food Chem ; 444: 138454, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38330616

RESUMEN

Coloured rice is known as a healthcare food owing its rich flavonoid content. To better understand the effects of iron on the flavonoid metabolism of coloured rice grains, different concentrations of FeSO4 were foliar sprayed on to red rice Yuhongdao 5815 (RR) and black rice Nanheinuo (BR). The results revealed the association of iron with the increased accumulation of anthocyanins in BR and proanthocyanins in RR along with enhancements in their antioxidant capacities and total flavonoid contents. Metabolomic analysis revealed that the differential metabolites between the iron treated coloured rice and the control primarily occurred because of the O-linked glycosylation of aglycones, which are involved in the flavonoid pathway. RR exhibited a significantly higher number of differential metabolites compared with BR. Thus, foliar FeSO4 application affects the O-linked glycosylation and positively regulates flavonoid metabolism.


Asunto(s)
Flavonoides , Oryza , Flavonoides/metabolismo , Antocianinas/metabolismo , Oryza/metabolismo , Glicosilación , Hierro/análisis
4.
Ecol Evol ; 13(9): e10535, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37780534

RESUMEN

Recent studies have found that avian bill and tarsus morphology may have evolved in response to climatic conditions, and these organs play important roles in thermoregulation and water retention in extreme environments. Here, we examined whether bill surface area and tarsus length were associated with climatic conditions in the plain laughingthrush, Garrulax davidi, which mainly occurs in north China and occupies several climatic zones from east to west. We measured bill surface area and tarsus length in 321 adults from 11 populations, almost encompassing all habitat types of the species. We analyzed the relationships among these morphological traits and local climatic factors. Bill surface area was positively correlated with maximum temperature, indicating that bill surface area tended to be larger in hotter environments. Furthermore, we found a negative relationship among bill surface area and winter precipitation, indicating that bill surface area tended to be larger in arid areas. However, we did not find any relationships between tarsus length and climatic factors. These results suggest that local climates may shape the evolution of bill morphology divergence, and summer seems to be the critical season for thermoregulation in this temperate zone passerine.

5.
Sci Rep ; 13(1): 18315, 2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37880216

RESUMEN

Silicon (Si) and/or proline (Pro) are natural supplements that are considered to induce plants' stress tolerance against various abiotic stresses. Sweet corn (Zea mays L. saccharata) production is severely afflicted by salinity stress. Therefore, two field tests were conducted to evaluate the potential effects of Si and/or Pro (6mM) used as seed soaking (SS) and/or foliar spray (FS) on Sweet corn plant growth and yield, physio-biochemical attributes, and antioxidant defense systems grown in a saline (EC = 7.14dS m-1) soil. The Si and/or Pro significantly increased growth and yield, photosynthetic pigments, free proline, total soluble sugars (TSS), K+/Na+ratios, relative water content (RWC), membrane stability index (MSI), α-Tocopherol (α-TOC), Ascorbate (AsA), glutathione (GSH), enzymatic antioxidants activities and other anatomical features as compared to controls. In contrast, electrolytes, such as SS and/or FS under salt stress compared to controls (SS and FS using tap water) were significantly decreased. The best results were obtained when SS was combined with FS via Si or Pro. These alterations are brought about by the exogenous application of Si and/or Pro rendering these elements potentially useful in aiding sweet corn plants to acclimate successfully to saline soil.


Asunto(s)
Antioxidantes , Zea mays , Antioxidantes/farmacología , Silicio/farmacología , Prolina/farmacología , Estrés Salino , Glutatión , Agua , Suelo/química
6.
Plants (Basel) ; 12(17)2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37687275

RESUMEN

Previous studies have identified numerous transcription factors involved in drought response, each of which play different roles in plants. The objective of the present study was to evaluate the effectiveness of two transcription factors on drought response in Jatropha curcas L., JcNAC1 and JcZFP8. The overexpression of these transcription factors in tobacco (Nicotiana benthamiana L.) improved drought resistance, but JcZFP8 delayed germination and JcNAC1 reduced biomass and yield. By constitutively co-expressing these two genes in tobacco, drought resistance was improved, and the negative effects of each of them were overcome. The transgenic plants with double-gene co-expression showed stronger drought tolerance with 1.76-fold greater accumulation of proline and lower H2O2 and malondialdehyde (MDA) content to 43 and 65% of wildtype (WT) levels, respectively. The expression levels of NbbHLH1 and NbbHLH2 genes upregulated linearly with the increased drought tolerance of double genes co-expression plants. In drought conditions, the leaf water contents of bhlh1, bhlh2, and bhlh1bhlh2 deletion mutants obtained by CRISPR-CAS9 knockout technique were maintained at 99%, 97%, and 97% of WT. The bhlh1bhlh2 was found with lower germination rate but with higher reactive oxygen levels (1.64-fold H2O2 and 1.41-fold MDA levels). Thus, the co-expression of two transcription factors with different functions overcame the adverse traits brought by a single gene and enhanced the shared drought-tolerant traits, which can provide guidance on theory and selection of gene combinations for the application of multi-gene co-expression in agriculture in the future.

7.
PLoS One ; 18(8): e0289659, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37540657

RESUMEN

Erythropalum scandens Bl. is a woody vegetable with high nitrogen demand that inhabits southern China. Ammonium and nitrate are the two main forms of inorganic nitrogen that plants directly absorb. A pot experiment was performed to determine the growth, physiological responses, and preferences of 12-month-old E. scandens seedlings for ammonium and nitrate. Aboveground and underground growth indexes, biomass, physiological and biochemical indexes (chlorophyll [Chl], soluble sugar, soluble protein and free proline contents), and substrate pH and nitrogen contents were determined under different nitrate and ammonium ratios (0 NO3-: 100 NH4+, 25 NO3-: 75 NH4+, 50 NO3-: 50 NH4+, 75 NO3-: 25 NH4+, and 100 NO3-: 0 NH4+), and the control (0 NO3-: 0 NH4+). The results showed that ammonium and nitrate improved the growth and physiological status of E. scandens seedlings in most of the treatments compared to the control. The aboveground growth status and biomass accumulation of E. scandens seedlings were significantly better under the 0 NO3-: 100 NH4+ treatment during fertilization compared with all other treatments. However, the growth status of the underground parts was not significantly different among treatments. Significant differences in osmoregulator content, except for soluble sugars, and Chl content were observed. Soluble sugars and soluble proteins were highest under the 0 NO3-: 100 NH4+ treatment at the end of fertilization (day 175). However, free proline accumulated during fertilization and the increase in NO3- indicated that excessive use of NO3- had a negative effect on the E. scandens seedlings. The order of accumulating nitrogen content was leaves > roots > stems. The highest N accumulation occurred in the aboveground parts under the 0 NO3-: 100 NH4+ treatment, whereas the highest N accumulation occurred in the underground parts under the 50 NO3-: 50 NH4+ treatment. Substrate pH increased at the end of fertilization (day 175) compared with the middle stage (day 75), while total nitrogen, ammonium, and nitrate were highly significantly different among the treatments. Total nitrogen and NH4+ content were the highest under the 0 NO3-: 100 NH4+ treatment, while NO3- content was the highest under the 100 NO3-: 0 NH4+ treatment. In conclusion, 12-month-old E. scandens seedlings grew best, and had better physiological conditions in NH4+ than NO3-. The 0 NO3-:100 NH4+ treatment (ammonium chloride 3.82 g/plant) resulted in the best growth and physiological conditions. Most of the growth and physiological indexes were inhibited with the increase in nitrate.


Asunto(s)
Compuestos de Amonio , Nitratos , Nitratos/metabolismo , Compuestos de Amonio/metabolismo , Clorofila/metabolismo , Plantones , Nitrógeno/metabolismo , Prolina/metabolismo , Azúcares/metabolismo , Raíces de Plantas/metabolismo
8.
PLoS One ; 18(6): e0287998, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37384791

RESUMEN

This study proposes a method for determining 3-D limit equilibrium solutions. The method, inspired by Sarma, introduces the horizontal seismic coefficient as a slope failure parameter and implements a modification of the normal stress over the slip surface. Four equilibrium equations are used to solve the problem without compromising the accuracy of the calculations: three force equilibrium equations in the x, y, and z directions and a moment equilibrium equation in the vertical (z) direction. The reliable factor of safety can be determined by calculating the minimum value of the horizontal seismic coefficient. Furthermore, we analyzed several typical examples of symmetric and asymmetric slopes, finding good consistency with the existing literature. This consistency indicates the reliability of the factor of safety we obtained. The proposed method is favored due to its straightforward principle, convenient operation, fast convergence, and ease of programming.


Asunto(s)
Reproducibilidad de los Resultados , Distribución Normal
9.
Front Plant Sci ; 14: 1144319, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37123831

RESUMEN

Introduction: Osmoprotectant supplementation can be used as a useful approach to enhance plant stress tolerance. However, the effect of silymarin and clove fruit extract (CFE) on wheat plants grown under cadmium (Cd) stress has not been studied. Methods: Wheat seeds were planted in plastic pots filled with ions-free sand. A ½-strength Hoagland's nutrient solution was used for irrigation. Pots were treated with eight treatments thirteen days after sowing: 1) Control, 2) 0.5 mM silymarin foliar application [silymarin], 3) 2% CFE foliar application [CFE], 4) CFE enriched with silymarin (0.24 g silymarin L-1 of CFE) [CFE-silymarin], 5) Watering wheat seedlings with a nutritious solution of 2 mM Cd [Cd]. 6) Cadmium + silymarin, 7) Cadmium + CFE, and 8) Cadmium + CFE-silymarin. The experimental design was a completely randomized design with nine replicates. Results and discussion: The Cd stress decreased grain yield, shoot dry weight, leaf area, carotenoids, chlorophylls, stomatal conductance, net photosynthetic rate, transpiration rate, membrane stability index, nitrogen, phosphorus, and potassium content by 66.9, 60.6, 56.7, 23.8, 33.5, 48.1, 41.2, 48.7, 42.5, 24.1, 39.9, and 24.1%, respectively. On the other hand, Cd has an Application of CFE, silymarin, or CEF-silymarin for wheat plants grown under Cd stress, significantly improved all investigated biochemical, morphological, and physiological variables and enhanced the antioxidant enzyme activities. Applying CFE and/or silymarin enhanced plant tolerance to Cd stress more efficiently. Our findings suggest using CFE-silymarin as a meaningful biostimulator for wheat plants to increase wheat plants' tolerance to Cd stress via enhancing various metabolic and physiological processes.

10.
Artículo en Inglés | MEDLINE | ID: mdl-37233210

RESUMEN

A 52-year-old woman was injured in an accident. Emergency tests showed rib fractures and pleural effusion. However, lung incarceration was found during the thoracic exploration that was not detected in the preoperative images. Although this occurrence is rare, clinicians should be careful of this possible pitfall, which may bring about a poor prognosis after a rib fracture.

11.
BMC Psychiatry ; 23(1): 350, 2023 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-37210486

RESUMEN

BACKGROUND: The level of depression among drug addicts is generally higher than normal. Hostility and sense of life meaning may influence depression and become risk factors for depression. This study has three research purposes. First, to analyze whether drug use can aggravate hostility and depression levels. Second, to assess whether the hostility has different effects on depression among drug addicts and non-addicts. Third, to examine whether the sense of life meaning has a mediating role between different groups (drug addicts and non-addicts). METHODS: This study was conducted from March to June 2022. 415 drug addicts (233 males and 182 females) and 411 non-addicts (174 males and 237 females) were recruited in Chengdu, Sichuan Province. After signing informed consent, their psychometric data were obtained using the Cook-Medley Hostility Scale (CMI), Beck Depression Inventory (BDI) and Meaning in Life Questionnaire (MLQ) questionnaires. Linear regression models were used to assess the impact of hostility and depression among drug addicts and non-addicts. Bootstrap mediation effect tests were used to further test the mediation effect of sense of life meaning between hostility and depression. RESULTS: The results showed four main outcomes. First, compared with non-addicts, drug addicts had higher levels of depression. Second, hostility exacerbated depression in both drug addicts and non-addicts. Compared with non-addicts, hostile affect had a greater effect on depression in drug addicts. Third, the sense of life meaning among females was higher than males. Fourth, for drug addicts, the sense of life meaning showed a mediating effect between social aversion and depression, while for non-addicts, the sense of life meaning showed a mediating effect between cynicism and depression. CONCLUSIONS: Depression is more severe in drug addicts. More attention should be paid to the mental health of drug addicts, because the elimination of negative emotions is conducive to reintegration into society. Our results provide a theoretical basis for reducing depression among drug addicts and non-addicts. As a protective factor, we can reduce their hostility and depression by improving the sense of life meaning.


Asunto(s)
Consumidores de Drogas , Hostilidad , Masculino , Femenino , Humanos , Factores de Riesgo , Psicometría , Encuestas y Cuestionarios
12.
Genes (Basel) ; 14(4)2023 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-37107540

RESUMEN

Noncoding RNAs (ncRNAs) called tsRNAs (tRNA-derived short RNAs) have the ability to regulate gene expression. The information on tsRNAs in fat tissue is, however, limited. By sequencing, identifying, and analyzing tsRNAs using pigs as animal models, this research reports for the first time the characteristics of tsRNAs in subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT). A total of 474 tsRNAs, 20 and 21 of which were particularly expressed in VAT and SAT, respectively, were found in WAT. According to the analysis of the tsRNA/miRNA/mRNA co-expression network, the tsRNAs with differential expression were primarily engaged in the endocrine and immune systems, which fall under the classification of organic systems, as well as the global and overview maps and lipid metropolis, which fall under the category of metabolism. This research also discovered a connection between the activity of the host tRNA engaged in translation and the production of tsRNAs. This research also discovered that tRF-Gly-GCC-037/tRF-Gly-GCC-042/tRF-Gly-CCC-016 and miR-218a/miR281b may be involved in the regulation of fatty acid metabolism in adipose tissue through SCD based on the tsRNA/miRNA/mRNA/fatty acid network. In conclusion, our findings enrich the understanding of ncRNAs in WAT metabolism and health regulation, as well as reveal the differences between SAT and VAT at the level of tsRNAs.


Asunto(s)
Grasa Intraabdominal , MicroARNs , Animales , Porcinos/genética , Grasa Intraabdominal/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Ácidos Grasos/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
13.
Polymers (Basel) ; 15(5)2023 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-36904549

RESUMEN

Collagen (Col) hydrogels are an important biomaterial with many applications in the biomedical sector. However, deficiencies, including insufficient mechanical properties and a rapid rate of biodegradation, hamper their application. In this work, nanocomposite hydrogels were prepared by combining a cellulose nanocrystal (CNC) with Col without any chemical modification. The high-pressure, homogenized CNC matrix acts as nuclei in the collagen's self-aggregation process. The obtained CNC/Col hydrogels were characterized in terms of their morphology, mechanical and thermal properties and structure by SEM, rotational rheometer, DSC and FTIR, respectively. Ultraviolet-visible spectroscopy was used to characterize the self-assembling phase behavior of the CNC/Col hydrogels. The results showed an accelerated assembling rate with the increasing loading of CNC. The triple-helix structure of the collagen was preserved with a dosage of CNC of up to 15 wt%. The CNC/Col hydrogels demonstrated an improvement in both the storage modulus and thermal stability which is attributed to the interaction between the CNC and collagen by the hydrogen bonds.

14.
J Cachexia Sarcopenia Muscle ; 14(2): 1033-1045, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36755335

RESUMEN

BACKGROUND: Increasing evidence shows that tRNA-derived small RNAs (tsRNAs) are not only by-products of transfer RNAs, but they participate in numerous cellular metabolic processes. However, the role of tsRNAs in skeletal muscle regeneration remains unknown. METHODS: Small RNA sequencing revealed the relationship between tsRNAs and skeletal muscle injury. The dynamic expression level of 5'tiRNA-Gly after muscle injury was confirmed by real-time quantitative PCR (q-PCR). In addition, q-PCR, flow cytometry, the 5-ethynyl-2'-deoxyuridine (Edu), cell counting kit-8, western blotting and immunofluorescence were used to explore the biological function of 5'tiRNA-Gly. Bioinformatics analysis and dual-luciferase reporter assay were used to further explore the mechanism of action under the biological function of 5'tiRNA-Gly. RESULTS: Transcriptome analysis revealed that tsRNAs were significantly enriched during inflammatory response immediately after muscle injury. Interestingly, we found that 5'tiRNA-Gly was significantly up-regulated after muscle injury (P < 0.0001) and had a strong positive correlation with inflammation in vivo. In vitro experiments showed that 5'tiRNA-Gly promoted the mRNA expression of proinflammatory cytokines (IL-1ß, P = 0.0468; IL-6, P = 0.0369) and the macrophages of M1 markers (TNF-α, P = 0.0102; CD80, P = 0.0056; MCP-1, P = 0.0002). On the contrary, 5'tiRNA-Gly inhibited the mRNA expression of anti-inflammatory cytokines (IL-4, P = 0.0009; IL-10, P = 0.0007; IL-13, P = 0.0008) and the mRNA expression of M2 markers (TGF-ß1, P = 0.0016; ARG1, P = 0.0083). Flow cytometry showed that 5'tiRNA-Gly promoted the percentage of CD86+ macrophages (16%, P = 0.011) but inhibited that of CD206+ macrophages (10.5%, P = 0.012). Immunofluorescence showed that knockdown of 5'tiRNA-Gly increased the infiltration of M2 macrophages to the skeletal muscles (13.9%, P = 0.0023) and inhibited the expression of Pax7 (P = 0.0089) in vivo. 5'tiRNA-Gly promoted myoblast the expression of myogenic differentiation marker genes (MyoD, P = 0.0002; MyoG, P = 0.0037) and myotube formation (21.3%, P = 0.0016) but inhibited the positive rate of Edu (27.7%, P = 0.0001), cell viability (22.6%, P = 0.003) and the number of myoblasts in the G2 phase (26.3%, P = 0.0016) in vitro. Mechanistically, we found that the Tgfbr1 gene is a direct target of 5'tiRNA-Gly mediated by AGO1 and AGO3. 5'tiRNA-Gly dysregulated the expression of downstream genes related to inflammatory response, activation of satellite cells and differentiation of myoblasts through the TGF-ß signalling pathway by targeting Tgfbr1. CONCLUSIONS: These results reveal that 5'tiRNA-Gly potentially regulated skeletal muscle regeneration by inducing inflammation via the TGF-ß signalling pathway. The findings of this study uncover a new potential target for skeletal muscle regeneration treatment.


Asunto(s)
Músculo Esquelético , ARN , Humanos , ARN/metabolismo , Receptor Tipo I de Factor de Crecimiento Transformador beta/metabolismo , Músculo Esquelético/metabolismo , Citocinas/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , ARN Mensajero/genética , Regeneración/genética , Factor de Crecimiento Transformador beta/metabolismo , Inflamación/genética , Inflamación/metabolismo
15.
Sci Adv ; 9(6): eade0423, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36763652

RESUMEN

Biological compounds often provide clues to advance material designs. Replicating their molecular structure and functional motifs in artificial materials offers a blueprint for unprecedented functionalities. Here, we report a flexible biomimetic thermal sensing (BTS) polymer that is designed to emulate the ion transport dynamics of a plant cell wall component, pectin. Using a simple yet versatile synthetic procedure, we engineer the physicochemical properties of the polymer by inserting elastic fragments in a block copolymer architecture, making it flexible and stretchable. The thermal response of our flexible polymer outperforms current state-of-the-art temperature sensing materials, including vanadium oxide, by up to two orders of magnitude. Thermal sensors fabricated from these composites exhibit a sensitivity that exceeds 10 mK and operate stably between 15° and 55°C, even under repeated mechanical deformations. We demonstrate the use of our flexible BTS polymer in two-dimensional arrays for spatiotemporal temperature mapping and broadband infrared photodetection.

16.
Animals (Basel) ; 12(24)2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36552481

RESUMEN

Epigenetic factors, including non-coding RNA regulation, play a vital role in the development of obesity and have been well researched. Transfer RNA-derived small RNA (tsRNA) is a class of non-coding RNA proven to be involved in various aspects of mammalian biology. Here we take pigs as a model for obesity research and use tsRNA-seq to investigate the difference in tsRNA expression in the subcutaneous adipose tissue of obese and lean pigs to elucidate the role of tsRNA in obesity development. A total of 482 tsRNAs were identified in pig adipose tissue, of which 123 were significantly differentially accumulated tsRNAs compared with the control group. The tRF-5c was the main type of these tsRNAs. The largest number of tsRNAs produced was the Gly-carrying tRNA, which produced 81 tsRNAs. Functional enrichment analysis revealed that differential tsRNAs indirectly participated in MAPK, AMPK, insulin resistance, the TNF signaling pathway, adipocytokine signaling pathway, and other signaling pathways by interacting with target genes. These are involved in bioenergetic metabolic regulatory processes, suggesting that tsRNAs may influence these pathways to mediate the regulation of energy metabolism in porcine adipocytes to promote lipid deposition, thus contributing to obesity. Our findings suggest a potential function of tsRNA in regulating obesity development.

17.
Am J Cancer Res ; 12(10): 4721-4736, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36381324

RESUMEN

N-linked glycosylation of proteins is one of the post-translational modifications (PTMs) that shield tumor antigens from immune attack. Signaling lymphocytic activation molecule family 7 (SLAMF7) suppresses cancer cell phagocytosis and is an ideal target under clinical development. PTM of SLAMF7, however, remains less understood. In this study, we investigated the role of N-glycans on SLAMF7 in breast cancer progression. We identified seven N-linked glycosylation motifs on SLAMF7, which are majorly occupied by complex structures. Evolutionally conserved N98 residue is enriched with high mannose and sialylated glycans. Hyperglycosylated SLAMF7 was associated with STT3A expression in breast cancer cells. Inhibition of STT3A by a small molecule inhibitor, N-linked glycosylation inhibitor-1 (NGI-1), reduced glycosylation of SLAMF7, resulting in enhancing antibody affinity and phagocytosis. To provide an on-target effect, we developed an antibody-drug conjugate (ADC) by coupling the anti-SLAMF7 antibody with NGI-1. Deglycosylation of SLAMF7 increases antibody recognition and promotes macrophage engulfment of breast cancer cells. Our work suggests deglycosylation by ADC is a potential strategy to enhance the response of immunotherapeutic agents.

18.
Front Bioeng Biotechnol ; 10: 973892, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36082168

RESUMEN

Malignant pleural effusion is one of the most common complications of advanced lung cancer and there is no effective clinical treatment at present. Here, we constructed an aptamer-siRNA chimeras/PEI/PEG/gold nanoparticle (AuNP)/collagen membrane that can progressively activate T cells by layer by layer assembly. Electron microscope showed this collagen membrane could be divided into 10 layers with a total thickness of 50-80µm, and AuNPs could be observed. Aptamer-siRNA chimeras could bind specifically to OX40+ cells and silencing programmed death receptor-1 (PD-1) gene. In vitro experiments demonstrated that chimeras/PEI/PEG/AuNPs gradually activated T cells to continuously kill lung adenocarcinoma cells in malignant pleural effusion. Animal experiments showed that chimeras/PEI/PEG/AuNP/collagen membrane effectively treated malignant pleural effusion. Compared with PD-1 inhibitor group, the number of cancer cells, ki-67 proliferation index and CD44 expression in the pleural effusion was significantly decreased and the lymphocyte/cancer cell ratio was significantly increased in the chimeras/AuNP-CM group. Flow cytometry showed that compared with PD-1 inhibitor group, T cell number in the chimeras/AuNP-CM group was significantly increased, while the proportion of PD-1+ T cells was markedly decreased. In conclusion, we constructed an chimeras/PEI/PEG/AuNP/collagen membrane, which was more effective in the treatment of malignant pleural effusion, and had less side effects than PD-1 inhibitors.

19.
Front Bioeng Biotechnol ; 10: 929867, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35957644

RESUMEN

Severe inflammatory response and functional impairment of endothelial progenitor cells (EPCs) often lead to the implantation failure of EPC-captured tissue-engineered blood vessels (TEBVs) in diabetes. Regulatory T cells (Treg cells) are the most important inhibitory immune cells, but their effects in angiogenesis remain undefined, and the differences in the microenvironment may be an important reason. Here, we constructed a TEBV coated with an anti-CD34 antibody-functionalized heparin-collagen multilayer (anti-CD34 antibody-modified TEBV) using layer-by-layer self-assembly. Then, TEBVs were implanted into diabetic pigs. All TEBVs remained unobstructed 60 days after implantation, although varying degrees of intimal hyperplasia were detectable. Severe intimal hyperplasia was observed in the control group and peripheral injection of Treg cells group. Intravenous injection of Treg cells significantly inhibited intimal hyperplasia, inflammation, and cell apoptosis. Moreover, intravenous injection increased the proportion of circulating EPCs, while peripheral injection did not have these effects and reduced microvessel density around the TEBV. Interestingly, many Nestin+ cells could be detected in TEBVs, most of which were fusiform, showing the characteristics of smooth-muscle cells. Treg cell intravenous transplantation markedly reduced the number of Nestin+ cells in the TEBV. In conclusion, Treg cells inhibited the intimal hyperplasia of TEBVs in diabetic pigs by promoting EPC mobilization, anti-inflammatory action, and cellular protection.

20.
Int J Biol Sci ; 18(13): 4950-4962, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35982903

RESUMEN

The function of the adipose tissue is influenced by complex interactions between genetics, epigenetics, and the environment, and its dysfunction can cause a variety of metabolic diseases, such as obesity or type 2 diabetes (T2D). The beige/brown adipose tissue plays a crucial role in regulating glucose and lipid metabolism by increasing energy metabolism to generate heat. The adipose tissue thermogenic program is a complex network that involves many signaling pathways regulated by coding RNAs (cRNAs) that encode transcription factor, and non-coding RNAs (ncRNAs) including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs). This article discusses factors that regulate adipose tissue thermogenesis, including cRNAs and ncRNAs, and the important role of thermogenic adipose tissue in obesity-related metabolic syndrome. Several studies have shown that some cRNAs and ncRNAs can modulate the thermogenic function of adipose tissue in different ways. This article reviews the roles of cRNAs and ncRNAs in regulating thermogenesis in the beige/brown adipose tissue and the important role of the beige/brown adipose tissue in maintaining the balance of glucose and lipid metabolism in the body.


Asunto(s)
Diabetes Mellitus Tipo 2 , Metabolismo de los Lípidos , Tejido Adiposo Pardo/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Metabolismo Energético , Glucosa/metabolismo , Humanos , Metabolismo de los Lípidos/genética , Obesidad/genética , Obesidad/metabolismo , Termogénesis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...