Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Cardiovasc Dev Dis ; 10(7)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37504536

RESUMEN

Fulminant myocarditis (FM) is an acute and severe form of myocarditis with rapid progression and poor clinical outcomes in the absence of acute or chronic coronary artery disease. Electrocardiogram (ECG) abnormalities can provide preliminary clues for diagnosis; however, there is a lack of systemic descriptions on ECG changes in FM populations. Thus, a retrospective analysis of 150 consecutive FM patients and 300 healthy controls was performed to determine the characteristic ECG findings in FM. All patients included had markedly abnormal ECG findings. Specifically, 83 (55.33%) patients had significantly lower voltage with remarkably decreased QRS amplitudes in all leads compared with healthy controls (p < 0.01), and 77 (51.33%) patients had a variety of arrhythmias with lethality ventricular tachycardia/ventricular fibrillation in 21 (14.00%) patients and third-degree atrioventricular block in 21 (14.00%) patients, whereas sinus tachycardia was only found in 43 (28.67%) patients with the median heart rate (HR; 88.00 bpm, IQR: 76.00-113.50) higher than that of controls (73.00 bpm, IQR: 68.00-80.00) (p = 0.000). Conduction and repolarization abnormalities were common in patients. A longer QTc interval (452.00 ms, IQR: 419.00-489.50) and QRS duration (94.00 ms, IQR: 84.00-119.00) were observed in patients compared to controls (QTc interval = 399.00 ms, IQR: 386.00-414.00; QRS duration = 90.00 ms, IQR: 86.00-98.00) (p < 0.05). Additionally, HR > 86.50 bpm, QTc > 431.50 ms, and RV5 + SV1 < 1.715 mV can be used to predict FM. Thus, marked and severe ECG abnormalities provide preliminary clues for the diagnosis of FM.

2.
Biomed Pharmacother ; 163: 114799, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37121147

RESUMEN

Cardiac hypertrophy is characterized by cardiac structural remodeling, fibrosis, microvascular rarefaction, and chronic inflammation. The heart is structurally organized by different cell types, including cardiomyocytes, fibroblasts, endothelial cells, and immune cells. These cells highly interact with each other by a number of paracrine or autocrine factors. Cell-cell communication is indispensable for cardiac development, but also plays a vital role in regulating cardiac response to damage. Although cardiomyocytes and fibroblasts are deemed as key regulators of hypertrophic stimulation, other cells, including endothelial cells, also exert important effects on cardiac hypertrophy. More particularly, endothelial cells are the most abundant cells in the heart, which make up the basic structure of blood vessels and are widespread around other cells in the heart, implicating the great and inbuilt advantage of intercellular crosstalk. Cardiac microvascular plexuses are essential for transport of liquids, nutrients, molecules and cells within the heart. Meanwhile, endothelial cell-mediated paracrine signals have multiple positive or negative influences on cardiac hypertrophy. However, a comprehensive discussion of these influences and consequences is required. This review aims to summarize the basic function of endothelial cells in angiogenesis, with an emphasis on angiogenic molecules under hypertrophic conditions. The secondary objective of the research is to fully discuss the key molecules involved in the intercellular crosstalk and the endothelial cell-mediated protective or detrimental effects on other cardiac cells. This review provides a more comprehensive understanding of the overall role of endothelial cells in cardiac hypertrophy and guides the therapeutic approaches and drug development of cardiac hypertrophy.


Asunto(s)
Cardiomegalia , Células Endoteliales , Humanos , Células Endoteliales/metabolismo , Cardiomegalia/metabolismo , Miocitos Cardíacos/metabolismo , Comunicación Paracrina/fisiología , Fibroblastos/metabolismo
3.
J Geriatr Cardiol ; 18(12): 1044-1057, 2021 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-35136399

RESUMEN

Cardiovascular disease (CVD) is the leading cause of morbidity and mortality in the general population. Energy metabolism disturbance is one of the early abnormalities in CVDs, such as coronary heart disease, diabetic cardiomyopathy, and heart failure. To explore the role of myocardial energy homeostasis disturbance in CVDs, it is important to understand myocardial metabolism in the normal heart and their function in the complex pathophysiology of CVDs. In this article, we summarized lipid metabolism/lipotoxicity and glucose metabolism/insulin resistance in the heart, focused on the metabolic regulation during neonatal and ageing heart, proposed potential metabolic mechanisms for cardiac regeneration and degeneration. We provided an overview of emerging molecular network among cardiac proliferation, regeneration, and metabolic disturbance. These novel targets promise a new era for the treatment of CVDs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...