Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 15(12)2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37370700

RESUMEN

Prostaglandins, the bioactive lipids generated from the metabolism of arachidonic acid through cyclooxygenases, have potent effects on many constituents of tumor microenvironments. In this review, we will describe the formation and activities of prostaglandins in the context of the tumor microenvironment. We will discuss the regulation of cancer-associated fibroblasts and immune constituents by prostaglandins and their roles in immune escapes during tumor progression. The review concludes with future perspectives on improving the efficacy of immunotherapy through repurposing non-steroid anti-inflammatory drugs and other prostaglandin modulators.

2.
Dev Cell ; 57(2): 228-245.e6, 2022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-35016014

RESUMEN

Although overwhelming plasma membrane integrity loss leads to cell lysis and necrosis, cells can tolerate a limited level of plasma membrane damage, undergo ESCRT-III-mediated repair, and survive. Here, we find that cells which undergo limited plasma membrane damage from the pore-forming actions of MLKL, GSDMD, perforin, or detergents experience local activation of PKCs through Ca2+ influx at the damage sites. S660-phosphorylated PKCs subsequently activate the TAK1/IKKs axis and RelA/Cux1 complex to trigger chemokine expressions. We observe that in late-stage cancers, cells with active MLKL show expression of CXCL8. Similar expression induction is also found in ischemia-injured kidneys. Chemokines generated in this manner are also indispensable for recruiting immune cells to the dead and dying cells. This plasma membrane integrity-sensing pathway is similar to the well-established yeast cell wall integrity signaling pathway at molecular level, and this suggests an evolutionary conserved mechanism to respond to the cellular barrier damage.


Asunto(s)
Membrana Celular/metabolismo , Quimiocinas/fisiología , Proteína Quinasa C/fisiología , Animales , Apoptosis/fisiología , Membrana Celular/fisiología , Quimiocinas/genética , Quimiocinas/inmunología , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Expresión Génica/genética , Regulación de la Expresión Génica/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Ratones Endogámicos C57BL , Necrosis/metabolismo , Proteínas de Unión a Fosfato/metabolismo , Fosforilación , Proteína Quinasa C/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Quinasas/fisiología , Transducción de Señal
3.
Nat Commun ; 10(1): 3055, 2019 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-31296870

RESUMEN

KRAS mutations are present in over 90% of pancreatic ductal adenocarcinomas (PDAC), and drive their poor outcomes and failure to respond to targeted therapies. Here we show that Leukemia Inhibitory Factor (LIF) expression is induced specifically by oncogenic KRAS in PDAC and that LIF depletion by genetic means or by neutralizing antibodies prevents engraftment in pancreatic xenograft models. Moreover, LIF-neutralizing antibodies synergize with gemcitabine to eradicate established pancreatic tumors in a syngeneic, KrasG12D-driven, PDAC mouse model. The related cytokine IL-6 cannot substitute for LIF, suggesting that LIF mediates KRAS-driven malignancies through a non-STAT-signaling pathway. Unlike IL-6, LIF inhibits the activity of the Hippo-signaling pathway in PDACs. Depletion of YAP inhibits the function of LIF in human PDAC cells. Our data suggest a crucial role of LIF in KRAS-driven pancreatic cancer and that blockade of LIF by neutralizing antibodies represents an attractive approach to improving therapeutic outcomes.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Carcinoma Ductal Pancreático/tratamiento farmacológico , Factor Inhibidor de Leucemia/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Desoxicitidina/uso terapéutico , Femenino , Técnicas de Inactivación de Genes , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Factor Inhibidor de Leucemia/antagonistas & inhibidores , Factor Inhibidor de Leucemia/genética , Ratones , Mutación , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal/genética , Factores de Transcripción , Ensayos Antitumor por Modelo de Xenoinjerto , Proteínas Señalizadoras YAP , Gemcitabina
4.
Cell ; 163(5): 1237-1251, 2015 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-26590425

RESUMEN

K-Ras and H-Ras share identical effectors and have similar properties; however, the high degree of tumor-type specificity associated with K-Ras and H-Ras mutations suggests that they have unique roles in oncogenesis. Here, we report that oncogenic K-Ras, but not H-Ras, suppresses non-canonical Wnt/Ca(2+) signaling, an effect that contributes strongly to its tumorigenic properties. K-Ras does this by binding to calmodulin and so reducing CaMKii activity and expression of Fzd8. Restoring Fzd8 in K-Ras mutant pancreatic cells suppresses malignancy, whereas depletion of Fzd8 in H-Ras(V12)-transformed cells enhances their tumor initiating capacity. Interrupting K-Ras-calmodulin binding using genetic means or by treatment with an orally active protein kinase C (PKC)-activator, prostratin, represses tumorigenesis in K-Ras mutant pancreatic cancer cells. These findings provide an alternative way to selectively target this "undruggable" protein.


Asunto(s)
Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Receptores de Superficie Celular/metabolismo , Vía de Señalización Wnt , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Calmodulina/metabolismo , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Genes ras , Humanos , Ratones , Datos de Secuencia Molecular , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/metabolismo , Papiloma/metabolismo , Ésteres del Forbol/administración & dosificación , Fosforilación , Unión Proteica/efectos de los fármacos
5.
Cancer Biol Ther ; 9(2): 122-33, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19923925

RESUMEN

A common metabolic change in cancer is the acquisition of glycolytic phenotypes. Increased expression of glycolytic enzymes is considered as one contributing factor. The role of mitochondrial defects in acquisition of glycolytic phenotypes has been postulated but remains controversial. Here we show that functional defects in mitochondrial respiration could be induced by oncogenic H-Ras(Q61L) transformation, even though the mitochondrial contents or mass was not reduced in the transformed cells. First, mitochondrial respiration, as measured by mitochondrial oxygen consumption, was suppressed in NIH-3T3 cells transformed with H-Ras(Q61L). Second, oligomycin or rotenone did not reduce the cellular ATP levels in the H-Ras(Q61L) transformed cells, suggesting a diminished role of mitochondrial respiration in the cellular energy metabolism. Third, inhibition of glycolysis with iodoacetic acid reduced ATP levels at a much faster rate in H-Ras(Q61L) transformed cells than in the vector control cells. The reduction of cellular ATP levels was reversed by exogenously added pyruvate in the vector control cells but not in H-Ras(Q61L) transformed cells. Finally when compared to the HRas(Q61L) transformed cells, the vector control cells had increased resistance toward glucose deprivation. The increased resistance was dependent on mitochondrial oxidative phosphorylation since rotenone or oligomycin abolished the increased survival of the vector control cells under glucose deprivation. The results also suggest an inability of the H-Ras(Q61L) transformed cells to reactivate mitochondrial respiration under glucose deprivation. Taken together, the data suggest that mitochondrial respiration can be impaired during transformation of NIH-3T3 cells by oncogeneic H-Ras(Q61L).


Asunto(s)
Transformación Celular Neoplásica , Fibroblastos/metabolismo , Genes ras , Mitocondrias/metabolismo , Proteína Oncogénica p21(ras)/fisiología , Adenosina Trifosfato/metabolismo , Animales , Antimicina A/farmacología , Transporte de Electrón/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Glucosa/metabolismo , Glucólisis/efectos de los fármacos , Ácido Yodoacético/farmacología , Ratones , Mitocondrias/efectos de los fármacos , Mutación Missense , Células 3T3 NIH/metabolismo , Oligomicinas/farmacología , Proteína Oncogénica p21(ras)/genética , Fosforilación Oxidativa/efectos de los fármacos , Consumo de Oxígeno/efectos de los fármacos , Mutación Puntual , Ácido Pirúvico/farmacología , Rotenona/farmacología
6.
Int J Cancer ; 124(7): 1545-51, 2009 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-19089921

RESUMEN

The enzyme 15-lipoxygenase-2 (15-LOX-2) utilizes arachidonic acid, a polyunsaturated fatty acid, to synthesize 15(S)-hydroxyeicosatetraenoic acid. Abundantly expressed in normal prostate epithelium but frequently suppressed in the cancerous tissues, 15-LOX-2 has been suggested as a functional suppressor of prostate cancer, but the mechanism(s) involved remains unknown. To study the functional role of 15-LOX-2 in prostate cancer, we expressed 15-LOX-2 as a fusion protein with GFP in DU145 and PC-3 cells and found that 15-LOX-2 increased cell cycle arrest at G0/G1 phase. When injected into athymic nu/nu mice, prostate cancer cells with 15-LOX-2 expression could still form palpable tumors without significant changes in tumorigenicity. But, the tumors with 15-LOX-2 expression grew significantly slower than those derived from vector controls and were kept dormant for a long period of time. Histological evaluation revealed an increase in cell death in tumors derived from prostate cancer cells with 15-LOX-2 expression, while in vitro cell culture conditions, no such increase in apoptosis was observed. Further studies found that the expression of vascular endothelial growth factor A (VEGF-A) was significantly reduced in prostate cancer cells with 15-LOX-2 expression restored. Our studies suggest that 15-LOX-2 suppresses VEGF gene expression and sustains tumor dormancy in prostate cancer. Loss of 15-LOX-2 functionalities, therefore, represents a key step for prostate cancer cells to exit from dormancy and embark on malignant progression in vivo.


Asunto(s)
Araquidonato 15-Lipooxigenasa/metabolismo , Regulación Neoplásica de la Expresión Génica/fisiología , Neoplasias de la Próstata/enzimología , Neoplasias de la Próstata/patología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Apoptosis/fisiología , Western Blotting , Línea Celular Tumoral , Proliferación Celular , Regulación hacia Abajo , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Expresión Génica , Humanos , Inmunohistoquímica , Masculino , Ratones , Neoplasias de la Próstata/genética , Proteínas Recombinantes de Fusión , Transfección , Factor A de Crecimiento Endotelial Vascular/genética
7.
Cancer Res ; 68(1): 115-21, 2008 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-18172303

RESUMEN

Thromboxane A(2) (TxA(2)) is a prostanoid formed by thromboxane synthase using the cyclooxygenase product prostaglandin H(2) as the substrate. Previously, increased expression of thromboxane synthase was found in prostate tumors, and tumor cell motility was attenuated by inhibitors of thromboxane synthase. This study was undertaken to elucidate how tumor motility is regulated by TxA(2). Here, we report that human prostate cancer cells express functional receptors for TxA(2) (TP). Ligand binding assay found that PC-3 cells binded to SQ29548, a high-affinity TP antagonist, in a saturable manner with K(d) of 3.64 nmol/L and B(max) of 120.4 fmol per million cells. Treatment of PC-3 cells by U46619, a TP agonist, induced PC-3 cell contraction, which was blocked by pretreatment with the TP antagonist SQ29548 or pinane TxA(2). The migration of prostate cancer cells was significantly inhibited either by sustained activation of TP or by blockade of TP activation, suggesting that TP activation must be tightly controlled during cell migration. Further studies found that small GTPase RhoA was activated by TP activation, and pretreatment of PC-3 cells with Y27632, a Rho kinase (ROCK) inhibitor, blocked U46619-induced cell contraction. A dominant-negative mutant of RhoA also blocked U46619-induced cell contraction. Taken together, the data suggest that TPs are expressed in prostate cancer and activation of TPs regulates prostate cancer cell motility and cytoskeleton reorganization through activation of Rho.


Asunto(s)
Carcinoma/patología , Movimiento Celular , Neoplasias de la Próstata/patología , Receptores de Tromboxano A2 y Prostaglandina H2/fisiología , Proteína de Unión al GTP rhoA/metabolismo , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacología , Amidas/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes , Carcinoma/química , Carcinoma/metabolismo , Línea Celular Tumoral , Inhibidores Enzimáticos/farmacología , Ácidos Grasos Insaturados , Humanos , Hidrazinas/farmacología , Ligandos , Masculino , Neoplasias de la Próstata/química , Neoplasias de la Próstata/metabolismo , Piridinas/farmacología , Receptores de Tromboxano A2 y Prostaglandina H2/análisis , Receptores de Tromboxano A2 y Prostaglandina H2/efectos de los fármacos , Proteína de Unión al GTP rhoA/análisis , Proteína de Unión al GTP rhoA/antagonistas & inhibidores
8.
Front Biosci ; 13: 759-76, 2008 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-17981586

RESUMEN

Small GTPase Rho signaling pathways regulate the growth, motility, invasion and metastasis of breast cancer cells. Aberrant Rho signaling, as results from alterations in the levels of Rho GTPase proteins, the status of activation, and the abundance of effector proteins, is found in breast cancers. Alterations of Rho signaling particularly impact the cytoskeleton, whose organization and reorganization underpin the motility of breast cancer cells during the invasive growth and metastasis of breast cancer. Progress is being made to elucidate the underlying mechanisms by which Rho GTPases activate the downstream signaling effectors. Further investigations are required for development of novel tumor therapeutic strategies targeting the Rho GTPase signaling pathways to treat breast cancer.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Proteínas de Unión al GTP rho/metabolismo , Animales , Antineoplásicos/farmacología , Movimiento Celular , Citoesqueleto/metabolismo , Progresión de la Enfermedad , Inhibidores Enzimáticos/farmacología , Humanos , Modelos Biológicos , Metástasis de la Neoplasia , Transducción de Señal , Proteína de Unión al GTP cdc42/metabolismo
9.
Cancer Res ; 67(21): 10361-7, 2007 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-17974979

RESUMEN

Resistance to chemotherapy is a significant barrier to the effective management of prostate cancer. Human pregnane X receptor (hPXR), an orphan nuclear receptor known for its activation by many important clinical drugs, interacts with many cellular signaling pathways during carcinogenesis and is a major transcription factor regulating the expression of drug metabolism enzymes, including transporters. It is unknown whether hPXR is a determinant of drug resistance in prostate cancer. In this study, we first detected the expression of hPXR in both normal and cancerous prostate tissues. Pretreatment with SR12813, a potent and selective agonist of hPXR, led to nuclear translocation of PXR in PC-3 cells and increased expression of cytochrome P450 3A4 (CYP3A4) and multidrug resistance 1 (MDR1). SR12813 pretreatment increased resistance of PC-3 cells to Taxol and vinblastine, as assessed by viability and clonogenic survival. To further study the role of hPXR in prostate cancer drug resistance, hPXR expression was knocked down using PXR-targeting short hairpin RNAs. The activities of hPXR toward the promoter of CYP3A4 in hPXR-ablated clones decreased when compared with that of wild-type PC-3 cells. Their sensitivities to Taxol and vinblastine were enhanced by hPXR ablation. Our data here suggest that hPXR may play an important role in prostate cancer resistance to chemotherapeutics.


Asunto(s)
Neoplasias de la Próstata/tratamiento farmacológico , Receptores de Esteroides/fisiología , Subfamilia B de Transportador de Casetes de Unión a ATP , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/análisis , Línea Celular Tumoral , Citocromo P-450 CYP3A , Sistema Enzimático del Citocromo P-450/análisis , Sistema Enzimático del Citocromo P-450/genética , Difosfonatos/farmacología , Resistencia a Antineoplásicos , Humanos , Inmunohistoquímica , Masculino , Receptor X de Pregnano , Receptores de Esteroides/análisis
10.
Cancer Metastasis Rev ; 26(3-4): 525-34, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17763971

RESUMEN

In response to various growth factors, hormones or cytokines, arachidonic acid can be mobilized from phospholipids pools and converted to bioactive eicosanoids through cyclooxygenase (COX), lipoxygenase (LOX) or P-450 epoxygenase pathway. The COX pathway generates five major prostanoids (prostaglandin D(2), prostaglandin E(2), prostaglandin F(2)alpha, prostaglandin I(2) and thromboxane A(2)) that play important roles in diverse biological processes. Studies suggest that different prostanoids and their own synthase can play distinct roles in tumor progression and cancer metastasis. COX-2 and PGE(2) synthase have been most well documented in the regulation of various aspects of tumor progression and metastasis. PGE(2), for example, can stimulate angiogenesis or other signaling pathways by binding to its receptors termed EPs. Therefore, targeting downstream prostanoids may provide a new avenue to impede tumor progression. In this review, aberrant expression and functions of several prostanoid synthetic enzymes in cancer will be discussed. The possible regulation of tumor progression by prostaglandins and their receptors will also be discussed.


Asunto(s)
Neoplasias/patología , Prostaglandina-Endoperóxido Sintasas/fisiología , Prostaglandinas/fisiología , Animales , Dinoprostona/fisiología , Progresión de la Enfermedad , Humanos , Neoplasias/enzimología , Receptores de Prostaglandina/fisiología , Tromboxano A2/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...