Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biotechnol ; 366: 10-18, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36868409

RESUMEN

This present study mainly focused on the investigation and optimization of the fermentation performance of oleaginous yeasts on Eucommia ulmoides Oliver hydrolysate (EUOH), which contains abundant and diverse sugars. More importantly, the impacts of the mixed strains fermentation compared with the single strain fermentation were analyzed and evaluated, through systematic investigations of substrate metabolism, cell growth, polysaccharide and lipid production, COD and ammonia-nitrogen removals. It was found that the mixed strains fermentation could effectively promote a more comprehensive and thorough utilization of the various sugars in EUOH, greatly improve COD removal effect, biomass and yeast polysaccharide production, but could not significantly improve the overall lipid content and ammonia nitrogen removal effect. In this study, when the two strains with the highest lipid content (i.e. L. starkeyi and R. toruloides) were mixed-cultured, the maximum lipid yield of 3.82 g/L was achieved, and the yeast polysaccharide yield, COD and ammonia-nitrogen removal rates of the fermentation (LS+RT) were 1.64 g/L, 67.4% and 74.9% respectively. When the strain with the highest polysaccharide content (i.e. R. toruloides) was mixed-cultured with the strains with strong growth activity (i.e. T. cutaneum and T. dermatis), a large amount of yeast polysaccharides could be obtained, which were 2.33 g/L (RT+TC) and 2.38 g/L (RT+TD) respectively. And the lipid yield, COD and ammonia-nitrogen removal rates of the fermentation (RT+TC), (RT+TD) were 3.09 g/L, 77.7%, 81.4% and 2.54 g/L, 74.9%, 80.4%, respectively.


Asunto(s)
Eucommiaceae , Fermentación , Amoníaco/metabolismo , Levaduras/metabolismo , Azúcares/metabolismo , Lípidos
2.
J Cell Mol Med ; 24(23): 13703-13714, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33094923

RESUMEN

Methylprednisolone is an effective drug in the treatment of autoimmune disease, such as multiple sclerosis (MS), due to long-acting anti-inflammatory, antiallergic and immunosuppressant. Previous studies have noted the importance of myeloid-derived suppressor cells (MDSC) in MS progression. However, it is still not known whether methylprednisolone could influence the ratio and function of MDSC during MS treatment. In the current study, we found an increased ratio of MDSC at the onset of EAE in mice model; but methylprednisolone pulse therapy (MPPT) did not alter the percentage and suppressive function of MDSC during disease attenuation. However, the percentage of G-MDSC in PBMC significantly increased in patients with MS. Surprisingly, relapsing MS patients showed a significant increase in both M-MDSC and G-MDSC after MPPT. The disease remission positively correlated expansion of MDSC and expression of arginase-1. Additionally, MPPT reduced the expression of inhibitory glucocorticoid (GCs) receptor ß subunit on MDSC while elevating serum levels of immune regulatory S100A8/A9 heterodimer. Thus, MDSC dynamics and function in mouse EAE differ from those in human MS during MPPT. Our study suggested that GCs treatment may help relieve the acute phase of MS by expanding MDSC through up-regulating of GR signalling and S100A8/A9 heterodimers.


Asunto(s)
Calgranulina A/metabolismo , Calgranulina B/metabolismo , Metilprednisolona/farmacología , Esclerosis Múltiple/metabolismo , Células Supresoras de Origen Mieloide/efectos de los fármacos , Células Supresoras de Origen Mieloide/metabolismo , Receptores de Glucocorticoides/metabolismo , Animales , Arginasa/metabolismo , Biomarcadores , Calgranulina A/genética , Calgranulina B/genética , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Encefalomielitis Autoinmune Experimental , Citometría de Flujo , Humanos , Inmunofenotipificación , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo , Ratones , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/etiología , Linfocitos T/inmunología , Linfocitos T/metabolismo
3.
Appl Biochem Biotechnol ; 190(2): 423-436, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31376051

RESUMEN

Lignocellulosic hydrolysate contains complex nonsugar compounds and undegraded sugars in the process of preparing platform compound levulinic acid (LA) and furfural by one-step dilute-acid hydrolysis. For efficiently and comprehensively utilizing the hydrolysate, a series of polar modified resins were synthesized for adsorption and separation of the sugarcane bagasse hydrolysate to obtain platform compounds and fermentable hydrolysate simultaneously. The adsorption capacities of LA and furfural were optimized to 85.32 mg/g and 33.55 mg/g on polar modified resin prepared with 80 wt% glycidyl methacrylate (GMA -80), which was much higher than nonpolar resin (4.16 mg/g and 16.14 mg/g). GMA-80 obtained the best comprehensive adsorption property, whose desorption rates were 99.90% and 89.86% for LA and furfural, respectively, and its regeneration performance was also excellent, indicating that the resin is a potential adsorbent and expected to be used in the separation and purification of the lignocellulosic hydrolysate.


Asunto(s)
Celulosa/química , Polímeros/química , Saccharum/química , Estireno/química , Compuestos de Vinilo/química , Adsorción , Hidrólisis
4.
Phys Chem Chem Phys ; 19(36): 24689-24695, 2017 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-28861575

RESUMEN

α-V2O5 nanowires with a layered structure have been fabricated through a two-step procedure. When measured as a pseudo-capacitive electrode with a three-electrode configuration in 1 M Na2SO4 aqueous solutions, α-V2O5 exhibits ideal capacitive characteristics with a specific capacitance of ∼238 F g-1 at a high current of 2 A g-1, but poor cycling stability with a continuous drop in the first 2000 cycles before it is maintained. To find possible solutions towards this problem, the energy storage behavior of the α-V2O5 electrode has been carefully investigated. In situ Raman analysis suggests that it is electrolytic hydrated cations [Na(H2O)n]+ rather than anions (SO42-) that are involved in the energy storage process through reversible adsorption/desorption on the surface or intercalation/deintercalation at the interlayer of the (001) planes accompanied by interlayer spacing expansion/contraction. Moreover, the electrochemical quartz crystal microbalance results indicate that, besides a reversible mass change, there is a continuous mass loss that may originate from slow dissolution of V2O5, which should bear the main responsibility for the poor stability (initial dramatic drop). Hence, how to inhibit dissolution, such as by coating or adding additives in the electrolyte, is found to be the key approach to improve the stability of V2O5 based electrodes.

5.
ACS Appl Mater Interfaces ; 9(15): 13173-13180, 2017 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-28353335

RESUMEN

A facile and cost-efficient approach to functionalize raw carbon fiber paper (CFP) used for a self-standing capacitive electrode has been proposed here. Benefiting from the improved specific surface area and surface functional groups, the functionalized CFP (F-CFP) showed much enhanced capacitive performance, 3 orders of magnitude higher than that of the raw CFP. It delivered the areal capacitance of 1275 mF cm-2 at 5 mA cm-2 with a rather wide voltage window of 1.4 V (-0.4 to 1 V vs Ag/AgCl) in 0.5 M H2SO4. However, in a neutral 1 M Na2SO4 aqueous solution, although the areal capacitance of 1115 mF cm-2 at 3 mA cm-2 is slightly smaller, the potential window is much wider (2 V, -1 to 1 V vs Ag/AgCl), indicating a high overpotential of hydrogen evolution. The areal capacitance was still as high as 722 mF cm-2 at a very fast charge-discharge current density of 50 mA cm-2, and about 66% of the initial capacitance (at 3 mA cm-2) was remained in Na2SO4, indicating considerable rate capability.

6.
ACS Appl Mater Interfaces ; 8(36): 23721-8, 2016 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-27561652

RESUMEN

Self-standing and flexible films worked as pseudocapacitor electrodes have been fabricated via a simple vacuum-filtration procedure to stack δ-MnO2@carbon nanotubes (CNTs) composite layer and pure CNT layer one by one with CNT layers ended. The lightweight CNTs layers served as both current collector and supporter, while the MnO2@CNTs composite layers with birnessite-type MnO2 worked as active layer and made the main contribution to the capacitance. At a low discharge current of 0.2 A g(-1), the layered films displayed a high areal capacitance of 0.293 F cm(-2) with a mass of 1.97 mg cm(-2) (specific capacitance of 149 F g(-1)) and thickness of only 16.5 µm, and hence an volumetric capacitance of about 177.5 F cm(-3). Moreover, the films also exhibited a good rate capability (only about 15% fading for the capacitance when the discharge current increased to 5 A g(-1) from 0.2 A g(-1)), outstanding cycling stability (about 90% of the initial capacitance was remained after 5,000 cycles) and high flexibility (almost no performance change when bended to different angles). In addition, the capacitance of the films increased proportionally with the stacked layers and the geometry area. E.g., when the stacked layers were three times many with a mass of 6.18 mg cm(-2), the areal capacitance of the films was increased to 0.764 F cm(-2) at 0.5 A g(-1), indicating a high electronic conductivity. It is not overstated to say that the flexible and lightweight layered films emerged high potential for future practical applications as supercapacitor electrodes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA