Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
World Neurosurg ; 181: e322-e329, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37839575

RESUMEN

BACKGROUND: The albumin/fibrinogen ratio (AFR) is an independent predictor of clinical outcomes of some diseases; however, the prognostic value of AFR and the admission Hunt-Hess (HH) score is still unclear for patients with an aneurysmal subarachnoid hemorrhage (aSAH). This study aimed to assess the relationship between the AFR-HH score and 6-month outcomes of aSAH patients. METHODS: The clinical characteristics of aSAH patients admitted to our department between December 2017 and December 2021 were retrospectively analyzed. The candidate risk factors were screened using univariate regression analysis, and the independence of the resultant risk factors was evaluated by binary logistic regression analysis. The predictive value of the combined AFR and HH score for unfavorable outcomes was assessed using receiver operating characteristic curve analysis. RESULTS: A total of 112 aSAH patients were included. Binary logistic regression analysis showed the perioperative period AFR, Glasgow coma scale score, and admission HH score were independent risk factors for unfavorable outcomes for aSAH patients. The receiver operating characteristic curve analysis showed the predictive capacity of AFR plus the admission HH score outperformed the AFR, Glasgow coma scale score, and admission HH scale alone and the combination of the AFR and Glasgow coma scale score. CONCLUSIONS: A low AFR during the perioperative period is associated with unfavorable outcomes for aSAH patients at 6 months. The combination of the AFR and admission HH scale score provides superior predictive capacity to either the AFR or HH scale score alone.


Asunto(s)
Hemorragia Subaracnoidea , Humanos , Hemorragia Subaracnoidea/diagnóstico , Hemorragia Subaracnoidea/cirugía , Estudios Retrospectivos , Fibrinógeno , Pronóstico , Escala de Coma de Glasgow
2.
Curr Cancer Drug Targets ; 23(2): 103-117, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36028965

RESUMEN

BACKGROUND: Cancer stem-like cells in triple-negative breast cancer (TNBC-SLCs) are the tumorigenic core for malignancy. Aberrant expression of the RON receptor tyrosine kinase has implications in TNBC tumorigenesis and malignancy. OBJECTIVE: In this study, we identified the RON receptor as a pathogenic factor contributing to TNBC cell stemness and validated anti-RON antibody-drug conjugate Zt/g4-MMAE for eradication of RONexpressing TNBC-SLCs. METHODS: Immunofluorescence and Western blotting were used for analyzing cellular marker expression. TNBC-SLCs were isolated by magnetic-immunofluorescence cell-sorting techniques. Spheroids were generated using the ultralow adhesion culture methods. Levels of TNBC-SLC chemosensitivity were determined by MTS assays. TNBC-SLC mediated tumor growth was determined in athymic nude mice. The effectiveness of Zt/g4-induced RON internalization was measured by immunofluorescence analysis. Efficacies of Zt/g4-MMAE in killing TNBC-SLCs in vitro and in eradicating TNBC-SLCmediated tumors were determined in mouse models. All data were statistically analyzed using the GraphPad Prism 7 software. RESULTS: Increased RON expression existed in TNBC-SLCs with CD44+/CD24- phenotypes and ALDH activities and facilitated epithelial to mesenchymal transition. RON-positive TNBC-SLCs enhanced spheroid-formatting capability compared to RON-negative TNBC-SLCs, which were sensitive to small molecule kinase inhibitor BMS-777607. Increased RON expression also promoted TNBC-SLC chemoresistance and facilitated tumor growth at an accelerated rate. In vitro, Zt/g4-MMAE caused massive TNBC-SLC death with an average IC50 value of ~1.56 µg per/ml and impaired TNBC cell spheroid formation. In mice, Zt/g4-MMAE effectively inhibited and/or eradicated TNBC-SLC mediated tumors in a single agent regimen. CONCLUSION: Sustained RON expression contributes to TNBC-SLC tumorigenesis. Zt/g4-MMAE is found to be effective in vivo in killing TNBC-SLC-mediated xenograft tumors. Our findings highlight the feasibility of Zt/g4-MMAE for the eradication of TNBC-SLCs in the future.


Asunto(s)
Inmunoconjugados , Neoplasias de la Mama Triple Negativas , Humanos , Animales , Ratones , Inmunoconjugados/farmacología , Inmunoconjugados/uso terapéutico , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Ratones Desnudos , Transición Epitelial-Mesenquimal , Línea Celular Tumoral , Anticuerpos Monoclonales/uso terapéutico , Carcinogénesis , Células Madre
3.
Opt Express ; 30(20): 36110-36121, 2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36258547

RESUMEN

The Artificial Intelligence of Things (AIoT) turns passive fiber sensors into learning machines. It can be used to integrate intelligent nodes into a multi-dimensional sensing system. In this study, the temperature measurement system based on Brillouin Gain Spectrum (BGS) test setup is creatively implemented with the AIoT architecture; the training and testing stages of the neural network are divided into different layers of equipment to improve performance and reduce the network traffic. To enable the lightweight and low-power consumption edge computing device to extract accurate temperature from the BGS during testing, we have integrated the post-processing method inspired by curve fitting into the machine learning and proposed the efficient digital resampling filter. The resampling filter approach is achieved by the peak range algorithm with Gauss differential operator and digital band-pass filter. The evaluation results for different methods on the BGS datasets show the superior performance of our approach. Notably, the approach can increase temperature extraction accuracy and compress the sampling data. The RMSEA of the extraction temperature is 0.5635, which can bring an almost 21% accuracy increase over the classic method. Compared with the classic method of processing the original data on the same hardware platform, the amount of data post-processed by the filter is reduced by 75%; the time consumption is reduced by 22%.

4.
Environ Toxicol ; 37(11): 2673-2682, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35962723

RESUMEN

PURPOSE: This work was to identify the function and mechanism of miR-219a-5p in regulating knee osteoarthritis (KOA). METHODS: Rat fibroblast-like synoviocytes (FLSs) were isolated to construct KOA cell model by lipopolysaccharide and adenosine triphosphate treatment. miR-219a-5p and FBXO3 expression in FLSs was modulated by transfection. Flow cytometry was executed to research FLSs apoptosis. Caspase-1 and IL-1ß expression in FLSs was researched by immunofluorescence. The binding between miR-219a-5p and FBXO3 was identified by dual luciferase reporter gene assay. KOA rat model and miR-219a-5p up-modulation KOA rat model were constructed. Step size of rats was analyzed. Knee joints of rats were experienced Safranin O-fast green staining to evaluate the knee joint injury. FBXO3, pyroptosis-associated proteins, and IL-1ß and IL-18 expression in FLSs and articular cartilage tissues of rats were assessed by Western blot, qRT-PCR and Enzyme-linked immunosorbent assay. RESULTS: KOA cell model had higher apoptosis percentage, expression of pyroptosis-associated proteins, and IL-1ß and IL-18 level. miR-219a-5p up-modulation decreased the above indicators, whereas miR-219a-5p down-modulation increased the above indicators. FBXO3 expression was directly repressed by miR-219a-5p. Loss of FBXO3 suppressed the above indicators. FBXO3 counteracted the suppression of miR-219a-5p on the above indicators. miR-219a-5p agomir attenuated knee joint injury, increased step size of KOA rats, and reduced FBXO3, pyroptosis-associated proteins and level of IL-1ß and IL-18 in the articular cartilage tissues of KOA rats. CONCLUSION: miR-219a-5p suppressed the pyroptosis in KOA by inactivating the NLRP3 signaling via targeting FBXO3, which might be a promising target for ameliorating KOA in the clinic.


Asunto(s)
MicroARNs , Osteoartritis de la Rodilla , Adenosina Trifosfato , Animales , Caspasa 1 , Proteínas F-Box , Interleucina-18 , Lipopolisacáridos , MicroARNs/genética , MicroARNs/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Osteoartritis de la Rodilla/genética , Osteoartritis de la Rodilla/metabolismo , Piroptosis , Ratas
5.
Curr Cancer Drug Targets ; 22(4): 312-327, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34951367

RESUMEN

BACKGROUND: Aberrant expression of the MET receptor tyrosine kinase is an oncogenic determinant and a drug target for cancer therapy. Currently, antibody-based biotherapeutics targeting MET are under clinical trials. OBJECTIVE: Here, we report the preclinical and therapeutic evaluation of a novel anti-MET antibody- drug conjugate PCMC1D3-duocarmycin SA (PCMC1D3-DCM) for targeted cancer therapy. METHODS: The monoclonal antibody PCMC1D3 (IgG1a/κ), generated by a hybridoma technique and specific to one of the MET extracellular domains, was selected based on its high specificity to human MET with a binding affinity of 1.60 nM. PCMC1D3 was conjugated to DCM via a cleavable valine-citrulline dipeptide linker to form an antibody-drug conjugate with a drug-to-antibody ratio of 3.6:1. PCMC1D3-DCM in vitro rapidly induced MET internalization with an internalization efficacy ranging from 6.5 to 17.2h dependent on individual cell lines. RESULTS: Studies using different types of cancer cell lines showed that PCMC1D3-DCM disrupted the cell cycle, reduced cell viability, and caused massive cell death within 96h after treatment initiation. The calculated IC50 values for cell viability reduction were 1.5 to 15.3 nM. Results from mouse xenograft tumor models demonstrated that PCMC1D3-DCM in a single dose injection at 10 mg/kg body weight effectively delayed xenograft tumor growth up to two weeks without signs of tumor regrowth. The calculated tumoristatic concentration, a minimal dose required to balance tumor growth and inhibition, was around 2 mg/kg body weight. Taken together, PCMC1D3-DCM was effective in targeting the inhibition of tumor growth in xenograft models. CONCLUSION: This work provides the basis for the development of humanized PCMC1D3-DCM for MET-targeted cancer therapy in the future.


Asunto(s)
Inmunoconjugados , Neoplasias , Animales , Peso Corporal , Línea Celular Tumoral , Duocarmicinas , Humanos , Inmunoconjugados/farmacología , Inmunoconjugados/uso terapéutico , Ratones , Neoplasias/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-met , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Opt Express ; 29(18): 28994-29006, 2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-34615018

RESUMEN

The development of optical fiber sensors has led to the possibility of accumulating vast, real-time databases of acoustic and other measurements throughout fiber networks, which brings even more widespread concern on improving the sampling effectiveness. In this paper, we present two kinds of sweep frequency methods based on using a neural network to extract temperature from the Brillouin gain spectrum (BGS). Gauss centralization and variance weight probability methods are proposed to compare with the uniform sweep frequency method. By analyzing formulas of the ideal BGS model, we find the gain near the peak of Brillouin gain spectrum has greater correlation with temperature extraction than other positions. Therefore, the Gaussian centralized sweep method is proposed. We further investigate the variation of the weights in the neural network and Brillouin data distribution in different positions and find that the variance is positively correlated with the weights in hidden layers. So, we propose the sweep frequency method based on variance weight probability and make a complement to interpret the rationality of this method in neural network. In all the aforementioned approaches, 281 points are obtained between the 9.07 GHz to 9.35 GHz range under the same condition. The data of each method is trained ten times and tested through the same neural network structure. All the RMSE of each test stage covers all data collecting the passage. The result shows that the RMSE of variance weight probability sweep frequency method is 0.5277, which is superior to the Gauss centralization sweep frequency method that was 0.6864 and the uniform sweep frequency method that was 0.9140.

7.
Rev Assoc Med Bras (1992) ; 67(4): 555-560, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34495060

RESUMEN

OBJECTIVE: In this study, we aimed at investigating the role of isoleucyl-tRNA synthetase in the growth, migration, and angiogenesis of human umbilical vein endothelial cells and the underlying molecular mechanism. METHODS: To assess the role of isoleucyl-tRNA synthetase, we silenced isoleucyl-tRNA synthetase in human umbilical vein endothelial cells using lentiviral 2 specific short hairpin RNAs (short hairpin RNAs 1 and 2) and examined silencing efficiency using real time quantitative polymerase chain reaction and western blot analyses. Short hairpin RNAs 1-isoleucyl-tRNA synthetase had greater knockdown efficiency, it was used in the entire downstream analysis. Short hairpin RNAs 1- isoleucyl-tRNA synthetase silencing effects on cell proliferation, cell colony generation, cell migration, as well as angiogenesis were assessed using cell counting kit-8, colony development, cell migration, and angiogenesis tube formation assays, respectively. RESULTS: Compared to the control group, anti-isoleucyl-tRNA synthetase short hairpin RNAs significantly silenced isoleucyl-tRNA synthetase expression in human umbilical vein endothelial cells, and suppressed their proliferation, migration, and angiogenic capacity. To characterize the underlying mechanism, western blot analyses showed that isoleucyl-tRNA synthetase knockdown suppressed phosphorylation of extracellular-regulated kinase ½ and protein-serine- threonine kinase, as well as expression of vascular endothelial growth factor, GSK-3ß, and ß-catenin. CONCLUSIONS: We have shown, for the first time, the critical role of isoleucyl-tRNA synthetase in human umbilical vein endothelial cells. Our data show that isoleucyl-tRNA synthetase knockdown suppresses human umbilical vein endothelial cell proliferation, migration, and angiogenesis. We have also shown that isoleucyl-tRNA synthetase knockdown suppresses phosphorylation of extracellular-regulated kinase ½ and protein-serine- threonine kinase, as well as expression of vascular endothelial growth factor, GSK-3ß, and ß-catenin. Together, these data highlight isoleucyl-tRNA synthetase as a potential antitumor anti-angiogenic target.


Asunto(s)
Factor A de Crecimiento Endotelial Vascular , Proliferación Celular , Células Cultivadas , Glucógeno Sintasa Quinasa 3 beta , Células Endoteliales de la Vena Umbilical Humana , Humanos
9.
Drug Discov Today ; 26(8): 1857-1874, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34224904

RESUMEN

Duocarmycins are a class of DNA minor-groove-binding alkylating molecules. For the past decade, various duocarmycin analogues have been used as payloads in the development of antibody-drug conjugates (ADCs). Currently, more than 15 duocarmycin-based ADCs have been studied preclinically, and some of them such as SYD985 have been granted Fast-Track Designation status. Nevertheless, progress in duocarmycin-based ADCs also faces challenges, with setbacks including the termination of BMS-936561/MDX-1203. In this review, we discuss issues associated with the efficacy, pharmacokinetic profile, and toxicological activity of these biotherapeutics. Furthermore, we summarize the latest advances in duocarmycin-based ADCs that have different target specificities and linker chemistries. Evidence from preclinical and clinical studies has indicated that duocarmycin-based ADCs are promising biotherapeutics for oncological application in the future.


Asunto(s)
Antineoplásicos/administración & dosificación , Duocarmicinas/administración & dosificación , Neoplasias/tratamiento farmacológico , Animales , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Desarrollo de Medicamentos/métodos , Evaluación Preclínica de Medicamentos/métodos , Duocarmicinas/farmacocinética , Duocarmicinas/farmacología , Humanos , Inmunoconjugados/administración & dosificación , Inmunoconjugados/farmacocinética , Inmunoconjugados/farmacología
10.
World Neurosurg ; 152: e118-e127, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34033962

RESUMEN

BACKGROUND: The neutrophil-to-lymphocyte ratio (NLR) is an independent predictor of clinical outcome of different diseases, such as acute ischemic stroke, intracerebral hemorrhage, malignant tumor, and traumatic brain injury. However, the prognostic value of NLR plus admission Glasgow Coma Scale score (NLR-GCS) is still unclear in patients with diffuse axonal injury (DAI). Therefore this study assessed the relationship between the NLR-GCS and 6-month outcome of DAI patients. METHODS: The clinical characteristics of DAI patients admitted to our department between January 2014 and January 2020 were retrospectively analyzed. The candidate risk factors were screened by using univariate analysis, and the independence of resultant risk factors was evaluated by the binary logistic regression analysis and least absolute shrinkage and selection operator regression analysis. The predictive value of NLR-GCS in an unfavorable outcome was assessed by the receiver operating characteristics curve analysis. RESULTS: A total of 93 DAI patients were included. Binary logistic regression analysis and least absolute shrinkage and selection operator regression analysis showed the level of NLR on admission was an independent risk factor of unfavorable outcomes in DAI patients. The ROC curve analysis showed that the predictive capacity of the combination of NLR and admission GCS score and combination of NLR and coma duration outperformed NLR, admission GCS score, and coma duration alone. CONCLUSIONS: The higher NLR level on admission is independently associated with unfavorable outcomes of DAI patients at 6 months. Furthermore, the combination of NLR and admission GCS score provides the superior predictive capacity to either NLR or GCS alone.


Asunto(s)
Lesión Axonal Difusa/sangre , Lesión Axonal Difusa/diagnóstico , Escala de Coma de Glasgow/tendencias , Linfocitos/metabolismo , Neutrófilos/metabolismo , Admisión del Paciente/tendencias , Adulto , Anciano , Lesión Axonal Difusa/terapia , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Estudios Retrospectivos , Resultado del Tratamiento
11.
Ther Adv Med Oncol ; 13: 17588359211006957, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33868463

RESUMEN

Aberrant expression and/or activation of the MET receptor tyrosine kinase is characterized by genomic recombination, gene amplification, activating mutation, alternative exon-splicing, increased transcription, and their different combinations. These dysregulations serve as oncogenic determinants contributing to cancerous initiation, progression, malignancy, and stemness. Moreover, integration of the MET pathway into the cellular signaling network as an addiction mechanism for survival has made this receptor an attractive pharmaceutical target for oncological intervention. For the last 20 years, MET-targeting small-molecule kinase inhibitors (SMKIs), conventional therapeutic monoclonal antibodies (TMABs), and antibody-based biotherapeutics such as bispecific antibodies, antibody-drug conjugates (ADC), and dual-targeting ADCs have been under intensive investigation. Outcomes from preclinical studies and clinical trials are mixed with certain successes but also various setbacks. Due to the complex nature of MET dysregulation with multiple facets and underlying mechanisms, mechanism-based validation of MET-targeting therapeutics is crucial for the selection and validation of lead candidates for clinical trials. In this review, we discuss the importance of various types of mechanism-based pharmaceutical models in evaluation of different types of MET-targeting therapeutics. The advantages and disadvantages of these mechanism-based strategies for SMKIs, conventional TMABs, and antibody-based biotherapeutics are analyzed. The demand for establishing new strategies suitable for validating novel biotherapeutics is also discussed. The information summarized should provide a pharmaceutical guideline for selection and validation of MET-targeting therapeutics for clinical application in the future.

12.
Rev. Assoc. Med. Bras. (1992) ; 67(4): 555-560, Apr. 2021. graf
Artículo en Inglés | LILACS | ID: biblio-1340629

RESUMEN

SUMMARY OBJECTIVE: In this study, we aimed at investigating the role of isoleucyl-tRNA synthetase in the growth, migration, and angiogenesis of human umbilical vein endothelial cells and the underlying molecular mechanism. METHODS: To assess the role of isoleucyl-tRNA synthetase, we silenced isoleucyl-tRNA synthetase in human umbilical vein endothelial cells using lentiviral 2 specific short hairpin RNAs (short hairpin RNAs 1 and 2) and examined silencing efficiency using real time quantitative polymerase chain reaction and western blot analyses. Short hairpin RNAs 1-isoleucyl-tRNA synthetase had greater knockdown efficiency, it was used in the entire downstream analysis. Short hairpin RNAs 1- isoleucyl-tRNA synthetase silencing effects on cell proliferation, cell colony generation, cell migration, as well as angiogenesis were assessed using cell counting kit-8, colony development, cell migration, and angiogenesis tube formation assays, respectively. RESULTS: Compared to the control group, anti-isoleucyl-tRNA synthetase short hairpin RNAs significantly silenced isoleucyl-tRNA synthetase expression in human umbilical vein endothelial cells, and suppressed their proliferation, migration, and angiogenic capacity. To characterize the underlying mechanism, western blot analyses showed that isoleucyl-tRNA synthetase knockdown suppressed phosphorylation of extracellular-regulated kinase ½ and protein-serine- threonine kinase, as well as expression of vascular endothelial growth factor, GSK-3β, and β-catenin. CONCLUSIONS: We have shown, for the first time, the critical role of isoleucyl-tRNA synthetase in human umbilical vein endothelial cells. Our data show that isoleucyl-tRNA synthetase knockdown suppresses human umbilical vein endothelial cell proliferation, migration, and angiogenesis. We have also shown that isoleucyl-tRNA synthetase knockdown suppresses phosphorylation of extracellular-regulated kinase ½ and protein-serine- threonine kinase, as well as expression of vascular endothelial growth factor, GSK-3β, and β-catenin. Together, these data highlight isoleucyl-tRNA synthetase as a potential antitumor anti-angiogenic target.


Asunto(s)
Humanos , Factor A de Crecimiento Endotelial Vascular , Células Cultivadas , Proliferación Celular , Células Endoteliales de la Vena Umbilical Humana , Glucógeno Sintasa Quinasa 3 beta
14.
World J Gastrointest Oncol ; 12(11): 1216-1236, 2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-33250957

RESUMEN

BACKGROUND: Programmed death ligand 1 (PD-L1) immunotherapy remains poorly efficacious in colorectal cancer (CRC). The recepteur d'origine nantais (RON) receptor tyrosine kinase plays an important role in regulating tumor immunity. AIM: To identify the patterns of RON and PD-L1 expression and explore their clinical significance in CRC. METHODS: Gene expression data from the Gene Expression Omnibus database (GEO; n = 290) and patients at the First Affiliated Hospital, Zhejiang University School of Medicine (FAHZUSM; n = 381) were analyzed to determine the prognostic value of RON and PD-L1 expression within the tumor microenvironment of CRC. HT29 cell line was treated with BMS-777607 to explore the relationship between RON activity and PD-L1 expression. Signaling pathways and protein expression perturbed by RON inhibition were evaluated by cellular immunofluorescence and Western blot. RESULTS: In the GEO patient cohort, cut-off values for RON and PD-L1 expression were determined to be 7.70 and 4.3, respectively. Stratification of patients based on these cutoffs demonstrated that high expression of RON and PD-L1 was associated with a poor prognosis. In the FAHZUSM cohort, rates of high expression of RON in tumor cells, high PD-L1 expression in tumor cells and tumor infiltrating monocytes, and both high RON and high PD-L1 expression in the tumor microenvironment were 121 (32%), 43 (11%), 91 (24%), and 51 (13.4%), respectively. High expression of RON was significantly correlated with high expression of PD-L1 in the tumor cell compartment (P < 0.001). High expression of RON and that of PD-L1 were independent prognostic factors for poorer overall survival. Concurrent high expression of both RON and PD-L1 in the tumor microenvironment was significantly associated with a poor prognosis. In vitro, BMS-777607 inhibited the phosphorylation of RON, inhibited PD-L1 expression, and attenuated activation of the ERK1/2 and AKT signaling pathways in CRC cells. CONCLUSION: RON, PD-L1, and their crosstalk are significant in predicting the prognostic value of CRC. Moreover, phosphorylation of RON upregulates PD-L1 expression, which provides a novel approach to immunotherapy in CRC.

15.
J Exp Clin Cancer Res ; 39(1): 198, 2020 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-32962738

RESUMEN

Advanced colorectal adenocarcinoma (CRAC), featured by distinctive histopathological appearance, distant organ metastasis, acquired chemoresistance, and tumorigenic stemness is a group of heterogeneous cancers with unique genetic signatures and malignant phenotypes. Treatment of CRAC is a daunting task for oncologists. Currently, various strategies including molecular targeting using therapeutic monoclonal antibodies, small molecule kinase inhibitors and immunoregulatory checkpoint therapy have been applied to combat this deadly disease. However, these therapeutic modalities and approaches achieve only limited success. Thus, there is a pharmaceutical need to discover new targets and develop novel therapeutics for CRAC therapy. MET and RON receptor tyrosine kinases have been implicated in CRAC pathogenesis. Clinical studies have revealed that aberrant MET and/or RON expression and signaling are critical in regulating CRAC progression and malignant phenotypes. Increased MET and/or RON expression also has prognostic value for CRAC progression and patient survival. These features provide the rationale to target MET and RON for clinical CRAC intervention. At present, the use of small molecule kinase inhibitors targeting MET for CRAC treatment has achieved significant progress with several approvals for clinical application. Nevertheless, antibody-based biotherapeutics, although under clinical trials for more than 8 years, have made very little progress. In this review, we discuss the importance of MET and/or RON in CRAC tumorigenesis and development of anti-MET, anti-RON, and MET and RON-dual targeting antibody-drug conjugates for clinical application. The findings from both preclinical studies and clinical trials highlight the potential of this novel type of biotherapeutics for CRAC therapy in the future.


Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Neoplasias Colorrectales/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-met/genética , Proteínas Tirosina Quinasas Receptoras/genética , Adenocarcinoma/inmunología , Adenocarcinoma/patología , Animales , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/patología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Inmunoconjugados/química , Inmunoconjugados/uso terapéutico , Ratones , Terapia Molecular Dirigida , Proteínas Proto-Oncogénicas c-met/antagonistas & inhibidores , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Biochim Biophys Acta Rev Cancer ; 1874(2): 188425, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32961258

RESUMEN

Advanced epithelial cancers such as gastric, lung, and pancreatic tumors are featured by invasive proliferation, distant metastasis, acquired chemoresistance, and tumorigenic stemness. For the last decade, molecular-targeted therapies using therapeutic antibodies, small molecule kinase inhibitors and immune-checkpoint blockades have been applied for these diseases with significant clinical benefits. Nevertheless, there is still a large gap to achieve curative outcomes. MET (mesenchymal-epithelial transition protein), a receptor tyrosine kinase, is a tumorigenic determinant that regulates epithelial cancer initiation, progression, and malignancy. Increased MET expression also has prognostic value for cancer progression and patient survival. These features provide the rationale to target MET for cancer treatment. In this review, we discuss the importance of MET in epithelial tumorigenesis and the development of antibody-based biotherapeutics, including bispecific antibodies and antibody-drug conjugates, for clinical application. The findings from both preclinical and clinical studies highlight the potential of MET-targeted biotherapeutics for cancer therapy in the future.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogénicas c-met/metabolismo , Antineoplásicos/uso terapéutico , Ensayos Clínicos como Asunto , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Terapia Molecular Dirigida , Neoplasias Pancreáticas/tratamiento farmacológico
17.
Drug Discov Today ; 25(7): 1160-1173, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32479905

RESUMEN

Treatment of triple-negative breast cancer (TNBC) is a challenge to oncologists. Currently, the lack of effective therapy has fostered a major effort to discover new targets and therapeutics to combat this disease. The recepteur d'origine nantais (RON) receptor has been implicated in the pathogenesis of TNBC. Clinical studies have revealed that aberrant RON expression is crucial in regulating TNBC malignant phenotypes. Increased RON expression also has prognostic value for breast cancer progress. These features provide the rationale to target RON for TNBC treatment. In this review, we discuss the importance of RON in TNBC tumorigenesis and the development of anti-RON antibody-drug conjugates (ADCs) for clinical application. The findings from preclinical studies lay the foundation for clinical trials of this novel biotherapeutic for TNBC therapy.


Asunto(s)
Inmunoconjugados/farmacología , Inmunoconjugados/uso terapéutico , Proteínas Tirosina Quinasas Receptoras/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Animales , Carcinogénesis/efectos de los fármacos , Carcinogénesis/metabolismo , Femenino , Humanos , Pronóstico , Neoplasias de la Mama Triple Negativas/metabolismo
18.
Ther Adv Med Oncol ; 12: 1758835920920069, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32426050

RESUMEN

The recepteur d'origine nantais (RON) receptor tyrosine kinase, belonging to the mesenchymal-to-epithelial transition proto-oncogene family, has been implicated in the pathogenesis of cancers derived from the colon, lung, breast, and pancreas. These findings lay the foundation for targeting RON for cancer treatment. However, development of RON-targeted therapeutics has not gained sufficient attention for the last decade. Although therapeutic monoclonal antibodies (TMABs) targeting RON have been validated in preclinical studies, results from clinical trials have met with limited success. This outcome diminishes pharmaceutical enthusiasm for further development of RON-targeted therapeutics. Recently, antibody-drug conjugates (ADCs) targeting RON have drawn special attention owing to their increased therapeutic activity. The rationale for developing anti-RON ADCs is based on the observation that cancer cells are not sufficiently addicted to RON signaling for survival. Thus, TMAB-mediated inhibition of RON signaling is ineffective for clinical application. In contrast, anti-RON ADCs combine a target-specific antibody with potent cytotoxins for cancer cell killing. This approach not only overcomes the shortcomings in TMAB-targeted therapies but also holds the promise for advancing anti-RON ADCs into clinical trials. In this review, we discuss the latest advancements in the development of anti-RON ADCs for targeted cancer therapy including drug conjugation profile, pharmacokinetic properties, cytotoxic effect in vitro, efficacy in tumor models, and toxicological activities in primates.

19.
Cancer Res Treat ; 52(3): 973-986, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32324988

RESUMEN

PURPOSE: Triple-negative breast cancer (TNBC) is highly malignant and has poor prognosis and a high mortality rate. The lack of effective therapy has spurred our investigation of new targets for treating this malignant cancer. Here, we identified RON (macrophage-stimulating 1 receptor) and MET (MET proto-oncogene, receptor tyrosine kinase) as a prognostic biomarker and therapeutic targets for potential TNBC treatment. MATERIALS AND METHODS: We analyzed RON and MET expression in 187 primary TNBC clinical samples with immunohistochemistry. We validated the targeted therapeutic effects of RON and MET in TNBC using three tyrosine kinase inhibitors (TKIs): BMS-777607, INCB28060, and tivantinib. The preclinical therapeutic efficacy of the TKIs was mainly estimated using a TNBC xenograft model. RESULTS: Patients with TNBC had widespread, abnormal expression of RON and MET. There was RON overexpression, MET overexpression, and RON and MET co-overexpression in 63 (33.7%), 63 (33.7%), and 43 cases (23.0%), respectively, which had poor prognosis and short survival. In vivo, the TKI targeting RON ant MET inhibited the activation of the downstream signaling molecules, inhibited TNBC cell migration and proliferation, and increased TNBC cell apoptosis; in the xenograft model, they significantly inhibited tumor growth and shrank tumor volumes. The TKI targeting RON and Met, such as BMS-777607 and tivantinib, yielded stronger anti-tumor effects than INCB28060. CONCLUSION: RON and MET co-overexpression can be significant pathological characteristics in TNBC for poor prognosis. TKIs targeting RON and MET have stronger drug development potential for treating TNBC.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-met/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Neoplasias de la Mama Triple Negativas/mortalidad , Adulto , Anciano , Anciano de 80 o más Años , Animales , Apoptosis , Biomarcadores de Tumor/genética , Movimiento Celular , Proliferación Celular , Femenino , Estudios de Seguimiento , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Ratones Desnudos , Persona de Mediana Edad , Pronóstico , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas c-met/genética , Proteínas Tirosina Quinasas Receptoras/genética , Tasa de Supervivencia , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Cell Death Dis ; 11(4): 270, 2020 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-32332707

RESUMEN

The RNA methyltransferase NSUN2 has been involved in the cell proliferation and senescence, and is upregulated in various types of cancers. However, the role and potential mechanism of NSUN2 in gastric cancer remains to be determined. Our study showed that NSUN2 was significantly upregulated in gastric cancers, compared to adjacent normal gastric tissues. Moreover, NSUN2 could promote gastric cancer cell proliferation both in vitro and in vivo. Further study demonstrated that CDKN1C (p57Kip2) was the potential downstream gene of regulated by NSUN2 in gastric cancer. NSUN2 could promote gastric cancer cell proliferation through repressing p57Kip2 in an m5C-dependent manner. Our findings suggested that NSUN2 acted as an oncogene through promoting gastric cancer development by repressing p57Kip2 in an m5C-dependent manner, which may provide a novel therapeutic target against gastric cancer.


Asunto(s)
Inhibidor p57 de las Quinasas Dependientes de la Ciclina/genética , Metiltransferasas/genética , ARN/genética , Neoplasias Gástricas/genética , Animales , Proliferación Celular , Femenino , Humanos , Metiltransferasas/efectos adversos , Ratones , Ratones Desnudos , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...