Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 16(22)2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-38005044

RESUMEN

Heat input, a crucial factor in the optimization of high-temperature thermocouple laser welding, has a significant impact on the appearance and mechanical properties of dissimilar welded joints involving stainless-steel- and nickel-based alloys. This study focuses on laser overlay welding of austenitic stainless steels and nickel-based alloys. The findings indicate that an increase in heat input has a more pronounced effect on the penetration depth and dilution rate. Under high heat input, the weld has cracks, spatter, and other defects. Additionally, considerable amounts of chromium (Cr) and nickel (Ni) elements are observed outside the grain near the crack, and their presence increases with higher heat input levels. Phase analysis reveals the presence of numerous Cr2Fe14C and Fe3Ni2 phases within the weld. The heat input increases to the range of 30-35 J/mm, and the weld changes from shear fracture to tensile fracture. In the center of the molten pool, the Vickers hardness is greater than that of the base metal, while in the fusion zone, the Vickers hardness is lower than that of the base metal. The overall hardness is in a downward trend with the increase of heat input, and the minimum hardness is only 159 HV0.3 at 40 J/mm. The heat input falls within the range of 28-30 J/mm, and the temperature shock resistance is at its peak.

2.
ACS Appl Mater Interfaces ; 15(12): 16211-16220, 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-36940427

RESUMEN

Hexagonal boron nitride (h-BN) exhibits a dangling bond-free layered structure and ultrawide band gap, which is apt to integrate with other semiconductors to form a heterojunction. Particularly, heterojunction structure is the main impetus for h-BN to broaden the horizon on deep ultraviolet optoelectronic and photovoltaic applications. Here, a series of h-BN/B1-xAlxN heterojunctions with different Al components were fabricated by radio frequency (RF) magnetron sputtering. The performance of h-BN/B1-xAlxN heterojunction was measured via I-V characteristic representation. The sample of h-BN/B0.89Al0.11N heterojunction was the best one due to the high lattice matching. Moreover, a type-II (staggered) band alignment was formed in this heterojunction which was elucidated by X-ray photoelectron spectroscopy (XPS). The calculated valence band offset (VBO) and conduction band offset (CBO) of h-BN/B0.89Al0.11N are 1.20 and 1.14 eV, respectively. The electronic properties and formation mechanism of h-BN/B0.89Al0.11N heterojunction were further studied by density functional theory (DFT) calculation. The existence of a built-in field (Ein) was confirmed, and the Ein direction was from the BAlN side to h-BN side. The staggered band alignment was further verified in this heterojunction, and an Al-N covalent bond existed at the interface from calculated results. This work paves a pathway to construct an ultrawide band gap heterojunction for the next-generated photovoltaic application.

4.
Poult Sci ; 101(5): 101756, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35367690

RESUMEN

Aspergillus flavus and Aspergillus fumigatus were derived and identified from the ducks infected with fungi. In order to investigate the effectiveness of Chinese herbal medicines against Aspergillus flavus and Aspergillus fumigatus, in vitro antibacterial test and animal infection control test were conducted to study the antibacterial activity of the Chinese medicine mixture which was compatible with Acorus gramineus, Phellodendron chinensis, and Cassia obtusifolia. According to the results, the liver of chickens infected with Aspergillus flavus and Aspergillus fumigatus displayed granulomatous lesions, indicating that the isolation of pathogen from the lungs of sick ducks is also pathogenic to chickens. As suggested by the results of in vitro drug sensitivity test, the mixture 1 MIC80 was the minimum, the MIC80 of Aspergillus flavus was 16 µg/µL, and the MIC80 of Aspergillus fumigatus was 4 µg/µL. In a petri dish of the same concentration, the colony diameter of Aspergillus flavus and Aspergillus fumigatus in Mixture 1 was the minimum. Besides, Aspergillus flavus colonies grew when the concentration was 64 µg/µL, and Aspergillus fumigatus colonies grew when the concentration was 4 µg/µL, which suggests the more significant inhibitory effect of Mixture 1 on Aspergillus flavus and Aspergillus fumigatus. According to the results of animal experiments, there was a significantly lower activity level of Glutamic oxaloacetic transaminase (GOT) and Glutamate pyruvic transaminase (GPT) in the protection group and the treatment group than in the bacterial infection group. As indicated by the blood smear results, there were more neutrophils in the infected group than in the prevention group and the treatment group. Thus, it can be seen from that the Mixture 1 produced preventive and therapeutic effects on the chickens infected with Aspergillus flavus and Aspergillus fumigatus.


Asunto(s)
Aspergillus fumigatus , Medicamentos Herbarios Chinos , Animales , Antibacterianos/farmacología , Aspergillus flavus , Pollos , Medicamentos Herbarios Chinos/farmacología , Patos , Femenino
5.
Phytochemistry ; 193: 113007, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34768185

RESUMEN

Plants have an extensively large number of enzymes including glycosyltransferases that are important in the biosynthesis of natural products. However, it is time-consuming and challenging to study these enzymes and only a small percentage of them have been well-characterized. Here, we report a rapid method to screen plant glycosyltransferases using a linear DNA expression template (LET) based cell-free transcription-translation system (TX-TL). As a proof of concept, we amplified and tested glycosyltransferases from Arabidopsis thaliana and showed that the catalytic activity results of these glycosyltransferases from LET-based-TX-TL were consistent with previous studies. We then chose a local medicinal plant Anoectochilus roxburghii, acquired its transcriptome sequences, and applied this method to study its glycosyltransferases. We rapidly expressed all the putative UDP-glucose glycosyltransferases using LET-based-TX-TL and discovered 6 unreported active glycosyltransferases which can catalyze the glycosylation of quercetin into isoquercitrin. Thus, LET-based-TX-TL was shown to be a powerful tool for researchers to rapidly screen plant glycosyltransferases for the first time.


Asunto(s)
Arabidopsis , Glicosiltransferasas , Arabidopsis/genética , ADN , Glicosiltransferasas/genética , Plantas , Uridina Difosfato Glucosa
6.
Nanomaterials (Basel) ; 9(12)2019 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-31847494

RESUMEN

A modified parallel electrode method (MPEM), conducted by placing a positively charged ring between the needle and the paralleled electrode collector, was presented to fabricate aligned polyacrylonitrile/graphene (PAN/Gr) composite nanofibers (CNFs) with nanopores in an electrospinning progress. Two kinds of solvents and one kind of nanoparticle were used to generate pores on composite nanofibers. The spinning parameters, such as the concentration of solute and solvent, spinning voltage and spinning distance were discussed, and the optimal parameters were determined. Characterizations of the aligned CNFs with nanopores were investigated by scanning electron microscopy (SEM), fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) analysis, transmission electron microscopy (TEM), high-resistance meter, and other methods. The results showed that graphene (Gr) nanoparticles were successfully introduced into aligned CNFs with nanopores and almost aligned along the axis of the CNFs. The MPEM method could make hydrophobic materials more hydrophobic, and improve the alignment degree and conductive properties of electrospun-aligned CNFs with nanopores. Moreover, the carbonized CNFs with nanopores, used as an electrode material, had a smaller charge-transfer resistance, suggesting potential application in electrochemical areas and electron devices.

7.
Nanomaterials (Basel) ; 8(7)2018 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-29954106

RESUMEN

As a kind of natural macromolecular protein molecule extracted from silk, silk fibroin (SF) has been widely used as biological materials in recent years due to its good physical and chemical properties. In this paper, a modified bubble-electrospinning (MBE) using a cone-shaped gas nozzle combined with a copper solution reservoir was applied to obtain high-throughput fabrication of SF nanofibers. In the MBE process, sodium dodecyl benzene sulfonates (SDBS) were used as the surfactant to improve the spinnability of SF solution. The rheological properties and conductivity of the electrospun SF solutions were investigated. And the effects of gas flow volume, SF solution concentration and additive amounts of SDBS on the morphology, property and production of SF nanofibers were studied. The results showed the decrease of gas flow volume could decrease the nanofiber diameter, enhance the diameter distribution, and increase the production of nanofibers. And the maximum yield could reach 3.10 g/h at the SF concentration of 10 wt % and the SDBS concentration of 0.1 wt %.

8.
Nanoscale Res Lett ; 12(1): 470, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28754037

RESUMEN

Based on bubble electrospinning (BE), a modified free surface electrospinning (MFSE) using a cone-shaped air nozzle combined with a solution reservoir made of copper tubes was presented to increase the production of quality nanofibers. In the MFSE process, sodium dodecyl benzene sulfonates (SDBS) were added in the electrospun solution to generate bubbles on a liquid surface. The effects of applied voltage and generated bubbles on the morphology and production of nanofibers were investigated experimentally and theoretically. The theoretical analysis results of the electric field were in good agreement with the experimental data and showed that the quality and production of nanofibers were improved with the increase of applied voltage, and the generated bubbles would decrease the quality and production of nanofibers.

9.
Polymers (Basel) ; 9(12)2017 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-30965959

RESUMEN

An improved bubble-electrospinning, consisting of a cone shaped air nozzle, a copper solution reservoir connected directly to the power generator, and a high speed rotating copper wire drum as a collector, was presented successfully to obtain high throughput preparation of aligned nanofibers. The influences of drum rotation speed on morphology and properties of obtained nanofibers were explored and researched. The results showed that the alignment degree, diameter distribution, and properties of nanofibers were improved with the increase of the drum rotation speed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...