Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
J Transl Med ; 22(1): 564, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38872164

RESUMEN

BACKGROUND/PURPOSE(S): The gut microbiota and its metabolites play crucial roles in pathogenesis of arthritis, highlighting gut microbiota as a promising avenue for modulating autoimmunity. However, the characterization of the gut virome in arthritis patients, including osteoarthritis (OA) and gouty arthritis (GA), requires further investigation. METHODS: We employed virus-like particle (VLP)-based metagenomic sequencing to analyze gut viral community in 20 OA patients, 26 GA patients, and 31 healthy controls, encompassing a total of 77 fecal samples. RESULTS: Our analysis generated 6819 vOTUs, with a considerable proportion of viral genomes differing from existing catalogs. The gut virome in OA and GA patients differed significantly from healthy controls, showing variations in diversity and viral family abundances. We identified 157 OA-associated and 94 GA-associated vOTUs, achieving high accuracy in patient-control discrimination with random forest models. OA-associated viruses were predicted to infect pro-inflammatory bacteria or bacteria associated with immunoglobulin A production, while GA-associated viruses were linked to Bacteroidaceae or Lachnospiraceae phages. Furthermore, several viral functional orthologs displayed significant differences in frequency between OA-enriched and GA-enriched vOTUs, suggesting potential functional roles of these viruses. Additionally, we trained classification models based on gut viral signatures to effectively discriminate OA or GA patients from healthy controls, yielding AUC values up to 0.97, indicating the clinical utility of the gut virome in diagnosing OA or GA. CONCLUSION: Our study highlights distinctive alterations in viral diversity and taxonomy within gut virome of OA and GA patients, offering insights into arthritis etiology and potential treatment and prevention strategies.


Asunto(s)
Artritis Gotosa , Microbioma Gastrointestinal , Osteoartritis , Viroma , Humanos , Artritis Gotosa/virología , Artritis Gotosa/microbiología , Masculino , Osteoartritis/virología , Osteoartritis/microbiología , Femenino , Persona de Mediana Edad , Estudios de Casos y Controles , Anciano , Metagenómica , Heces/virología , Heces/microbiología
2.
Cytokine ; 181: 156675, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38896956

RESUMEN

Gastric cancer (GC) is one of the most common malignant tumors in the world, and current treatments are still based on surgery and drug therapy. However, due to the complexity of immunosuppression and drug resistance, the treatment of gastric cancer still faces great challenges. Chemokine receptor 2 (CXCR2) is one of the most common therapeutic targets in targeted therapy. As a G protein-coupled receptor, CXCR2 and its ligands play important roles in tumorigenesis and progression. The abnormal expression of these genes in cancer plays a decisive role in the recruitment and activation of white blood cells, angiogenesis, and cancer cell proliferation, and CXCR2 is involved in various stages of tumor development. Therefore, interfering with the interaction between CXCR2 and its ligands is considered a possible target for the treatment of various tumors, including gastric cancer.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 318: 124516, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-38796893

RESUMEN

Carbon dots (CDs) with blue emission were synthesized by solvothermal method using hydroquinone and 5-aminoisphthalic acid as precursors. The strong oxidation of ClO- caused the fluorescence quenching of CDs at 405 nm, and synchronously generated a new emission peak at 500 nm. Furthermore, upon the addition of Cu2+ to CDs-ClO- system, the green fluorescence at 500 nm was quenched, while the blue emission at 405 nm remained unchanged, due to the complexation between Cu2+ and the amino group on the CDs surface. Meanwhile, the fluorescence color of system changed from blue to bright green and then to dark blue by sequentially increasing the concentrations of ClO- and Cu2+. The fluorescence signal of F500/F405 exhibited a linear relationship with the concentration of ClO- and Cu2+ in a certain range, respectively. Thus, a ratiometric fluorescence sensor based on the obtained CDs were developed to sequentially detect ClO- and Cu2+ with detection limits of 0.40 µM and 0.31 µM, respectively. Additionally, the CDs were mixed with polyvinyl alcohol hydrogel to form test strips, which were successfully used for visual detection of ClO- and Cu2+. Satisfactory results were also obtained in the analysis of ClO- and Cu2+ in actual water samples.

4.
Artículo en Inglés | MEDLINE | ID: mdl-38703321

RESUMEN

PURPOSE: This study assessed effect of food on pharmacokinetics (PK) and safety of fuzuloparib capsules. METHODS: A randomized, open-label, two-cycle, two-sequence, crossover clinical trial was conducted. 20 subjects were randomly assigned to 2 groups at a 1:1 ratio. The first group subjects were orally administered 150 mg fuzuloparib capsules under fasting condition in first dosing cycle. The same dose of fuzuloparib capsules were taken under postprandial state after a 7-day washout period. The second group was reversed. 3 ml whole blood was collected at each blood collection point until 72 h post dose. PK parameters were calculated. Furthermore, safety assessment was performed. RESULTS: The time to maximum concentration (Tmax) was prolonged to 3 h and maximum concentration (Cmax) decreased by 18.6% on high-fat diets. 90% confidence intervals (CIs) of geometric mean ratios (GMRs) for Cmax, area under the concentration-time curve from time zero to time t (AUC0-t), and area under the concentration-time curve extrapolated to infinity (AUC0-∞) after high-fat meal were 71.6-92.6%, 81.7-102.7% and 81.6-102.5%, respectively. All treatment-emergent adverse events (TEAEs) were grade 1; No serious adverse events (SAEs), serious unexpected suspected adverse reaction (SUSAR) or deaths were reported. CONCLUSION: Food decreased the absorption rate and slowed time to peak exposure of fuzuloparib capsules, without impact on absorption extent. Dosing with food was found to be safe for fuzuloparib capsules in this study. CLINICAL TRIAL REGISTRATION: This study was registered with chinadrugtrials.org.cn (identifier: CTR20221498).

5.
Biomed Chromatogr ; 38(6): e5860, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38558021

RESUMEN

A liquid chromatography-tandem mass spectrometry method with vonoprazan fumarate-d4 as a stable isotope-labeled internal standard was developed and validated aiming at quantification of vonoprazan fumarate in human plasma for a bioequivalence study. Chromatographic separation was achieved by acetonitrile one-step protein precipitation using a gradient elution of 0.1% formic acid aqueous solution and acetonitrile with a run time of 3.65 min. Detection was carried out on a tandem mass spectrometer in multiple reaction monitoring mode via a positive electrospray ionization interface. The multiple reaction monitoring mode of precursor-product ion transitions for vonoprazan fumarate and vonoprazan fumarate-d4 were m/z 346.0 → 315.1 and 350.0 → 316.0, respectively. The linear range was 0.150-60.000 ng/ml. This method was fully validated with acceptable results in terms of selectivity, carryover, lower limit of quantification, calibration curve, accuracy, precision, dilution effect, matrix effect, stability, recovery and incurred sample reanalysis. A successful application of this method was realized in the bioequivalence study of vonoprazan fumarate tablet (20 mg) among healthy Chinese volunteers.


Asunto(s)
Pirroles , Sulfonamidas , Espectrometría de Masas en Tándem , Equivalencia Terapéutica , Humanos , Espectrometría de Masas en Tándem/métodos , Sulfonamidas/sangre , Sulfonamidas/farmacocinética , Sulfonamidas/química , Pirroles/farmacocinética , Pirroles/sangre , Pirroles/química , Reproducibilidad de los Resultados , Modelos Lineales , Cromatografía Liquida/métodos , Límite de Detección , Masculino , Adulto , Cromatografía Líquida con Espectrometría de Masas
6.
Artículo en Inglés | MEDLINE | ID: mdl-38598393

RESUMEN

In graph based multiview clustering methods, the ultimate partition result is usually achieved by spectral embedding of the consistent graph using some traditional clustering methods, such as k -means. However, optimal performance will be reduced by this multistep procedure since it cannot unify graph learning with partition generation closely. In this article, we propose a one-step multiview clustering method through adaptive graph learning and spectral rotation (AGLSR). For every view, AGLSR adaptively learns affinity graphs to capture similar relationships of samples. Then, a spectral embedding is designed to take advantage of the potential feature space shared by different views. In addition, AGLSR utilizes a spectral rotation strategy to obtain the discrete clustering labels from the learned spectral embeddings directly. An effective updating algorithm with proven convergence is derived to optimize the optimization problem. Sufficient experiments on benchmark datasets have clearly demonstrated the effectiveness of the proposed method in six metrics. The code of AGLSR is uploaded at https://github.com/tangchuan2000/AGLSR.

7.
Eur J Pharm Sci ; 196: 106755, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38556064

RESUMEN

PURPOSE: Youkenafil is a novel oral selective PDE5 inhibitor for treating Erectile Dysfunction. This investigation assessed pharmacokinetics (PK), safety, and tolerability of youkenafil and its main metabolite (M459) after taking 100 mg youkenafil hydrochloride tablets in elderly and young subjects. METHODS: This Phase I, single-center, open-label, parallel-group, single-dose study was conducted on 24 individuals (12 elders and 12 youngsters). Each subject received a single oral 100 mg youkenafil hydrochloride tablets. Blood samples were collected before medication and up to 48 h after medication for PK analysis. Safety and tolerability were also assessed, including treatment-emergent adverse events (TEAEs), laboratory tests, 12-lead ECG, vital sign inspections, color vision examinations, and physical examinations. RESULTS: Plasma concentrations of youkenafil and M459 were quantified. PK parameters were determined by non-compartmental analysis. Median Tmax of elderly and young groups were both 0.733 h. However, Cmax, AUC0-t, and AUC0-∞ of youkenafil were separately 16.8 %, 37.2 %, and 37.5 % higher in elders and t1/2 of youkenafil was 2.1 h longer in elders. More great differences were observed for M459. T1/2 values were 4.05 h longer in elders, with Cmax, AUC0-t and AUC0-∞ 73.7 %, 81.1 %, and 81.4 % higher in elders. Two (8.3 %) elderly subjects reported TEAEs (all grade Ⅰ in severity) and both recovered without any treatment. No serious adverse reactions (SAEs) or serious unexpected suspected adverse reactions (SUSARs) occurred in this study. CONCLUSIONS: This was the first PK research of youkenafil and M459 in elderly men. PK parameters differences between youkenafil and M459 were comparable between elderly and young groups. Moreover, safety and tolerability of youkenafil were favorable in both groups.

8.
Artículo en Inglés | MEDLINE | ID: mdl-38319783

RESUMEN

In the realm of biomedicine, the prediction of associations between drugs and diseases holds significant importance. Yet, conventional wet lab experiments often fall short of meeting the stringent demands for prediction accuracy and efficiency. Many prior studies have predominantly focused on drug and disease similarities to predict drug-disease associations, but overlooking the crucial interactions between drugs and diseases that are essential for enhancing prediction accuracy. Hence, in this paper, a resilient and effective model named Hierarchical and Dynamic Graph Attention Network (HDGAT) has been proposed to predict drug-disease associations. Firstly, it establishes a heterogeneous graph by leveraging the interplay of drug and disease similarities and associations. Subsequently, it harnesses the capabilities of graph convolutional networks and bidirectional long short-term memory networks (Bi-LSTM) to aggregate node-level information within the heterogeneous graph comprehensively. Furthermore, it incorporates a hierarchical attention mechanism between convolutional layers and a dynamic attention mechanism between nodes to learn embeddings for drugs and diseases. The hierarchical attention mechanism assigns varying weights to embeddings learned from different convolutional layers, and the dynamic attention mechanism efficiently prioritizes inter-node information by allocating each node with varying rankings of attention coefficients for neighbour nodes. Moreover, it employs residual connections to alleviate the over-smoothing issue in graph convolution operations. The latent drug-disease associations are quantified through the fusion of these embeddings ultimately. By conducting 5-fold cross-validation, HDGAT's performance surpasses the performance of existing state-of-the-art models across various evaluation metrics, which substantiates the exceptional efficacy of HDGAT in predicting drug-disease associations.

9.
PLoS Pathog ; 20(1): e1011913, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38166144

RESUMEN

Mycotoxin deoxynivalenol (DON) produced by the Fusarium graminearum complex is highly toxic to animal and human health. During DON synthesis, the endoplasmic reticulum (ER) of F. graminearum is intensively reorganized, from thin reticular structure to thickened spherical and crescent structure, which was referred to as "DON toxisome". However, the underlying mechanism of how the ER is reorganized into toxisome remains unknown. In this study, we discovered that overproduction of ER-localized DON biosynthetic enzyme Tri4 or Tri1, or intrinsic ER-resident membrane proteins FgHmr1 and FgCnx was sufficient to induce toxisome-shaped structure (TSS) formation under non-toxin-inducing conditions. Moreover, heterologous overexpression of Tri1 and Tri4 proteins in non-DON-producing fungi F. oxysporum f. sp. lycopersici and F. fujikuroi also led to TSS formation. In addition, we found that the high osmolarity glycerol (HOG), but not the unfolded protein response (UPR) signaling pathway was involved in the assembly of ER into TSS. By using toxisome as a biomarker, we screened and identified a novel chemical which exhibited high inhibitory activity against toxisome formation and DON biosynthesis, and inhibited Fusarium growth species-specifically. Taken together, this study demonstrated that the essence of ER remodeling into toxisome structure is a response to the overproduction of ER-localized DON biosynthetic enzymes, providing a novel pathway for management of mycotoxin contamination.


Asunto(s)
Fusarium , Micotoxinas , Tricotecenos , Humanos , Micotoxinas/metabolismo , Fusarium/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Retículo Endoplásmico/metabolismo
10.
Comput Biol Med ; 169: 107904, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38181611

RESUMEN

miRNAs are a class of small non-coding RNA molecules that play important roles in gene regulation. They are crucial for maintaining normal cellular functions, and dysregulation or dysfunction of miRNAs which are linked to the onset and advancement of multiple human diseases. Research on miRNAs has unveiled novel avenues in the realm of the diagnosis, treatment, and prevention of human diseases. However, clinical trials pose challenges and drawbacks, such as complexity and time-consuming processes, which create obstacles for many researchers. Graph Attention Network (GAT) has shown excellent performance in handling graph-structured data for tasks such as link prediction. Some studies have successfully applied GAT to miRNA-disease association prediction. However, there are several drawbacks to existing methods. Firstly, most of the previous models rely solely on concatenation operations to merge features of miRNAs and diseases, which results in the deprivation of significant modality-specific information and even the inclusion of redundant information. Secondly, as the number of layers in GAT increases, there is a possibility of excessive smoothing in the feature extraction process, which significantly affects the prediction accuracy. To address these issues and effectively complete miRNA disease prediction tasks, we propose an innovative model called Multiplex Adaptive Modality Fusion Graph Attention Network (MAMFGAT). MAMFGAT utilizes GAT as the main structure for feature aggregation and incorporates a multi-modal adaptive fusion module to extract features from three interconnected networks: the miRNA-disease association network, the miRNA similarity network, and the disease similarity network. It employs adaptive learning and cross-modality contrastive learning to fuse more effective miRNA and disease feature embeddings as well as incorporates multi-modal residual feature fusion to tackle the problem of excessive feature smoothing in GATs. Finally, we employ a Multi-Layer Perceptron (MLP) model that takes the embeddings of miRNA and disease features as input to anticipate the presence of potential miRNA-disease associations. Extensive experimental results provide evidence of the superior performance of MAMFGAT in comparison to other state-of-the-art methods. To validate the significance of various modalities and assess the efficacy of the designed modules, we performed an ablation analysis. Furthermore, MAMFGAT shows outstanding performance in three cancer case studies, indicating that it is a reliable method for studying the association between miRNA and diseases. The implementation of MAMFGAT can be accessed at the following GitHub repository: https://github.com/zixiaojin66/MAMFGAT-master.


Asunto(s)
Aprendizaje , MicroARNs , Humanos , Redes Neurales de la Computación , Biología Computacional , Algoritmos
11.
Protein Cell ; 15(1): 52-68, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37294900

RESUMEN

Here, we report a previously unrecognized syndromic neurodevelopmental disorder associated with biallelic loss-of-function variants in the RBM42 gene. The patient is a 2-year-old female with severe central nervous system (CNS) abnormalities, hypotonia, hearing loss, congenital heart defects, and dysmorphic facial features. Familial whole-exome sequencing (WES) reveals that the patient has two compound heterozygous variants, c.304C>T (p.R102*) and c.1312G>A (p.A438T), in the RBM42 gene which encodes an integral component of splicing complex in the RNA-binding motif protein family. The p.A438T variant is in the RRM domain which impairs RBM42 protein stability in vivo. Additionally, p.A438T disrupts the interaction of RBM42 with hnRNP K, which is the causative gene for Au-Kline syndrome with overlapping disease characteristics seen in the index patient. The human R102* or A438T mutant protein failed to fully rescue the growth defects of RBM42 ortholog knockout ΔFgRbp1 in Fusarium while it was rescued by the wild-type (WT) human RBM42. A mouse model carrying Rbm42 compound heterozygous variants, c.280C>T (p.Q94*) and c.1306_1308delinsACA (p.A436T), demonstrated gross fetal developmental defects and most of the double mutant animals died by E13.5. RNA-seq data confirmed that Rbm42 was involved in neurological and myocardial functions with an essential role in alternative splicing (AS). Overall, we present clinical, genetic, and functional data to demonstrate that defects in RBM42 constitute the underlying etiology of a new neurodevelopmental disease which links the dysregulation of global AS to abnormal embryonic development.


Asunto(s)
Fisura del Paladar , Cardiopatías Congénitas , Discapacidad Intelectual , Femenino , Animales , Ratones , Humanos , Preescolar , Discapacidad Intelectual/genética , Cardiopatías Congénitas/genética , Facies , Hipotonía Muscular
12.
BMC Nurs ; 22(1): 457, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38049804

RESUMEN

BACKGROUND: Coronary heart disease (CHD) is a cardiovascular disease with high mortality. At present, percutaneous coronary intervention (PCI) is considered as the main effective treatment for CHD due to less trauma, shorter course of treatment, and better curative effect. However, PCI alone is not a permanent cure, so cardiac rehabilitation (CR) is needed for a supplement. Nowadays, the evaluation of the nursing-sensitive quality of CR after PCI focuses on the outcomes of patients, lacks a complete evaluation indicator system, and is prone to problems such as nursing management imbalance. OBJECTIVE: A scientific, sensitive, comprehensive and practical nursing-sensitive quality indicator system based on the structure-process-outcome model was constructed to provide a reference for evaluating nursing-sensitive quality of CR after PCI. METHODS: Firstly, through literature analysis and semi-structured interview, the indicator system was collected, screened and determined. Then, the framework of the indicator system was established, and the draft of nursing-sensitive quality indicator system of CR after PCI was formed. Subsequently, the nursing-sensitive quality indicator system of CR after PCI was initially established using Delphi method. Finally, the specific weight was determined by analytic hierarchy process (AHP), and the nursing-sensitive quality indicator system of CR after PCI was established and perfected. RESULTS: Two rounds of expert consultations were separately given 15 questionnaires, and all these questionnaires were returned, with a questionnaire response rate of 100%. Such result indicated that experts were highly motivated. Besides, the authoritative coefficients for two rounds of expert consultations were 0.865 and 0.888, and the coordination coefficients were 0.491 and 0.522, respectively. Hence, the experts' authority and coordination were high and the results were reliable. After the second round of expert consultation, the nursing-sensitive quality indicator system of CR after PCI was established, eventually. This system consisted of 3 first-level indicators (structural indicator, process indicator and outcome indicator), 11 s-level indicators and 29 third-level indicators. CONCLUSION: A relatively complete and reliable nursing-sensitive quality indicator system of CR after PCI has been established in this study. Such system is scientific and reliable and can provide a reference for the evaluation of clinical teaching quality of CR after PCI.

13.
Expert Opin Drug Metab Toxicol ; 19(12): 1005-1013, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38053514

RESUMEN

BACKGROUND: Famitinib, the novel oral multitargeting tyrosine kinase inhibitor, was developed for treatment of patients with advanced solid cancer. This investigation assessed the pharmacokinetic (PK) effects of itraconazole, an officially recommended CYP3A4 strong inhibitor, on famitinib and its metabolite (SHR116637). METHODS: A single-center, single-arm, open-label, and fixed sequence study was conducted in 22 healthy subjects. Famitinib was administered as a single oral 15 mg on Day1. Itraconazole 200 mg once daily was given from Day12 to Day24, concomitantly with famitinib on Day15 and for follow-up during Day30 to Day32. Blood sampling followed each famitinib dosage for PK analysis of famitinib and SHR116637. Safety and tolerability were also assessed throughout the treatment. RESULTS: Cmax, AUC0-t and AUC0-∞ were raised by 40.6%, 77.7% and 81.6%, respectively, and t1/2 was prolonged from 36.08 hours to 48.24 hours for famitinib. In contrast, Cmax, AUC0-t and AUC0-∞ were reduced by 63.5%, 42.6%, and 39.0%, respectively, for SHR116637. Eight (36.4%) subjects reported seventeen treatments that emerged adverse events (all grade 1-2 in severity) all recovered at follow-up period. CONCLUSIONS: Single oral dose of 15 mg famitinib and co-therapy with 200 mg intraconazole were safe and well tolerated in healthy subjects. Famitinib should be avoided in conjunction with strong CYP3A inhibitors if possible. TRIAL REGISTRATION: This trial was registered at http://www.chinadrugtrials.org.cn/index.html. (Registration number: CTR20201824.).


Asunto(s)
Itraconazol , Neoplasias , Humanos , Itraconazol/efectos adversos , Inhibidores del Citocromo P-450 CYP3A/efectos adversos , Indoles , Pirroles/uso terapéutico , Neoplasias/tratamiento farmacológico , Área Bajo la Curva , Voluntarios Sanos , Interacciones Farmacológicas , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo
14.
Biomed Chromatogr ; 37(8): e5638, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37002731

RESUMEN

A steady, high-efficiency, and precise liquid chromatography-electrospray ionization-tandem mass spectrometry method was established and validated using cefaclor-d5 as the stable isotope-labeled internal standard for quantification of cefaclor in human plasma. One-step protein precipitation was applied to extract human plasma samples using methanol as precipitant. An Ultimate XB C18 column (2.1 × 50.0 mm, 5.0 µm) was used to achieve chromatographic separation. Mobile phases of gradient elution were an aqueous solution containing 0.1% formic acid (mobile phase A) and an acetonitrile solution containing 0.1% formic acid (mobile phase B). Electrospray ionization in positive-ion mode was applied to detect under multiple reaction monitoring mode. Target fragment ion pairs of cefaclor and stable isotope-labeled internal standard, respectively, were m/z 368.2 → 191.1 and m/z 373.2 → 196.1. Linear range of this method was between 20.0 and 10,000.0 ng/ml, with coefficient of determination (R2 ) >0.9900. Seven concentrations of quality control samples were used: 20.0 ng/ml (lower limit of quantitation), 60.0 ng/ml (low quality control), 650 ng/ml (middle quality control), 5000 ng/ml (arithmetic average middle quality control [AMQC]), 7500 ng/ml (high quality control), 10,000 ng/ml (upper limit of quantification), and 40,000 ng/ml (dilution quality control [DQC]). The method was validated for selectivity, lower limit of quantitation, linearity, accuracy, precision, recovery, matrix effect, dilution reliability, stability, carryover, and incurred sample reanalysis. This stable isotope-labeled internal standard liquid chromatography-electrospray ionization-tandem mass spectrometry approach has been successfully applied to study the pharmacokinetics of cefaclor dry suspension among healthy Chinese volunteers.


Asunto(s)
Cefaclor , Humanos , Cefaclor/sangre , Cromatografía Líquida de Alta Presión/métodos , Cromatografía Liquida/métodos , Pueblos del Este de Asia , Reproducibilidad de los Resultados , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectrometría de Masas en Tándem/métodos , Voluntarios
15.
Pestic Biochem Physiol ; 190: 105311, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36740345

RESUMEN

The calcium-calcineurin and high-osmolarity glycerol (HOG) pathways play crucial roles in fungal development, pathogenicity, and in responses to various environmental stresses. However, interaction of these pathways in regulating fungicide sensitivity remains largely unknown in phytopathogenic fungi. In this study, we investigated the function of the calcium-calcineurin signalling pathway in Fusarium graminearum, the causal agent of Fusarium head blight. Inhibitors of Ca2+ and calcineurin enhanced antifungal activity of tebuconazole (an azole fungicide) against F. graminearum. Deletion of the putative downstream transcription factor FgCrz1 resulted in significantly increased sensitivity of F. graminearum to tebuconazole. FgCrz1-GFP was translocated to the nucleus upon tebuconazole treatment in a calcineurin-dependent manner. In addition, deletion of FgCrz1 increased the phosphorylation of FgHog1 in response to tebuconazole. Moreover, the calcium-calcineurin and HOG signalling pathways exhibited synergistic effect in regulating pathogenicity and sensitivity of F. graminearum to tebuconazole and multiple other stresses. RNA-seq data revealed that FgCrz1 regulated expression of a set of non-CYP51 genes that are associated with tebuconazole sensitivity, including multidrug transporters, membrane lipid biosynthesis and metabolism, and cell wall organization. Our findings demonstrate that the calcium-calcineurin and HOG pathways act coordinately to orchestrate tebuconazole sensitivity and pathogenicity in F. graminearum, which may provide novel insights in management of Fusarium disease.


Asunto(s)
Fungicidas Industriales , Fusarium , Glicerol/metabolismo , Calcio/metabolismo , Fungicidas Industriales/farmacología , Fungicidas Industriales/metabolismo , Calcineurina/genética , Calcineurina/metabolismo , Calcineurina/farmacología , Virulencia/genética , Concentración Osmolar , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Enfermedades de las Plantas/microbiología
16.
J Cancer Res Clin Oncol ; 149(9): 6675-6691, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36639531

RESUMEN

Bacteria have been found in tumors for over 100 years, but the irreproducibility of experiments on bacteria, the limitations of science and technology, and the contamination of the host environment have severely hampered most research into the role of bacteria in carcinogenesis and cancer treatment. With the development of molecular tools and techniques (e.g., macrogenomics, metabolomics, lipidomics, and macrotranscriptomics), the complex relationships between hosts and different microorganisms are gradually being deciphered. In the past, attention has been focused on the impact of the gut microbiota, the site where the body's microbes gather most, on tumors. However, little is known about the role of microbes from other sites, particularly the intratumor microbiota, in cancer. In recent years, an increasing number of studies have identified the presence of symbiotic microbiota within a large number of tumors, bringing the intratumor microbiota into the limelight. In this review, we aim to provide a better understanding of the role of the intratumor microbiota in cancer, to provide direction for future experimental and translational research, and to offer new approaches to the treatment of cancer and the improvement of patient prognosis.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Neoplasias , Humanos , Carcinogénesis , Metabolómica
17.
Spectrochim Acta A Mol Biomol Spectrosc ; 290: 122310, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36610210

RESUMEN

Novel dual-emission fluorescent nitrogen-doped carbon dots (N-CDs) were synthesized by a facile one-pot hydrothermal method using ascorbic acid and rhodamine B as precursors and melamine as nitrogen source. The obtained N-CDs exhibited dual-emitting peaks at 435 nm and 578 nm under the single excitation of 350 nm. The fluorescence at 578 nm was more effectively quenched by indigo carmine (IC) based on the internal filtration effect and aggregation-induced emission quenching. Meanwhile, the apparent color change of N-CDs from pink to blue-purple after adding various concentrations of IC could be clearly observed with the naked eye. Therefore, a ratiometric fluorescent and colorimetric dual-signal probe based on N-CDs was developed for IC detection with high selectivity and sensitivity. The addition of IC caused the ratiometric fluorescent value (F435/F578) to increase linearly within the range from 0 to100 µM with a detection limit (LOD) of 0.18 µM and the colorimetric signal presented a linear response in the range of 0-133 µM with a LOD of 57.4 nM. Furthermore, the IC in juice drink, candy, and water was successfully detected. Besides, the N-CDs were also designed as a ratiometric temperature probe, and the ratiometric fluorescence signal (F435/F578) was linearly and reversibly responsive to temperature in the range of 20-75 °C.

18.
Neurosci Bull ; 39(6): 911-928, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36528850

RESUMEN

Increased intestinal barrier permeability, leaky gut, has been reported in patients with autism. However, its contribution to the development of autism has not been determined. We selected dextran sulfate sodium (DSS) to disrupt and metformin to repair the intestinal barrier in BTBR T+tf/J autistic mice to test this hypothesis. DSS treatment resulted in a decreased affinity for social proximity; however, autistic behaviors in mice were improved after the administration of metformin. We found an increased affinity for social proximity/social memory and decreased repetitive and anxiety-related behaviors. The concentration of lipopolysaccharides in blood decreased after the administration of metformin. The expression levels of the key molecules in the toll-like receptor 4 (TLR4)-myeloid differentiation factor 88 (MyD88)-nuclear factor kappa B (NF-κB) pathway and their downstream inflammatory cytokines in the cerebral cortex were both repressed. Thus, "leaky gut" could be a trigger for the development of autism via activation of the lipopolysaccharide-mediated TLR4-MyD88-NF-κB pathway.


Asunto(s)
Trastorno Autístico , FN-kappa B , Ratones , Animales , Factor 88 de Diferenciación Mieloide/metabolismo , Lipopolisacáridos/farmacología , Receptor Toll-Like 4/metabolismo , Trastorno Autístico/inducido químicamente , Trastorno Autístico/metabolismo , Transducción de Señal/fisiología
19.
Biosens Bioelectron ; 221: 114940, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36436467

RESUMEN

After discovery of electron transfer from bacteria, most bacteria known to be electrochemically active are utilized as a self-regenerable catalyst at the anode of microbial fuel cells (MFCs). However, the reverse phenomenon, cathodic catalysts is not so widely researched. This present study demonstrated that E. coli O157:H7 was electrochemically active, and it was able to catalyze oxygen reduction at the cathode of bipolar electrode (BPE). Applying a constant potential to the BPE, E. coli O157:H7 can catalyze electrochemical reduction of O2, decrease the overpotential of O2 reduction at the cathode, which in turn generates an electrochemiluminescence (ECL) reporting intensity change at the anode. Significantly, a majority of food matrix does not exhibit catalytic activity for electrochemical reduction of O2. Meanwhile, due to the physically separation of two poles of closed BPE, complex food matrix at the cathode does not interfere with the ECL reaction at the anode. Therefore, the effect of food matrix is negligible when measuring E. coli O157:H7 levels in food. A low detection limit of 10 CFU mL-1 E. coli O157:H7 could be identified within 1 h. Thus, biocathodes reducing oxygen in BPE-ECL system has shown excellent characteristics in the field of rapid detection of electroactive bacteria in food.


Asunto(s)
Técnicas Biosensibles , Escherichia coli O157 , Oxígeno , Electrodos , Investigación
20.
J Clin Med ; 11(17)2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-36078885

RESUMEN

Neuropsychiatric systemic lupus erythematosus (NPSLE) has a broad spectrum of subtypes with diverse severities and prognoses. Ischemic and inflammatory mechanisms, including autoantibodies and cytokine-mediated pathological processes, are key components of the pathogenesis of NPSLE. Additional brain-intrinsic elements (such as the brain barrier and resident microglia) are also important facilitators of NPSLE. An improving understanding of NPSLE may provide further options for managing this disease. The attenuation of neuropsychiatric disease in mouse models demonstrates the potential for novel targeted therapies. Conventional therapeutic algorithms include symptomatic, anti-thrombotic, and immunosuppressive agents that are only supported by observational cohort studies, therefore performing controlled clinical trials to guide further management is essential and urgent. In this review, we aimed to present the latest pathogenetic mechanisms of NPSLE and discuss the progress in its management.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...