Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Med (Lausanne) ; 10: 1131373, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37064020

RESUMEN

Cholesterol homeostasis disorder and hypertriglyceridemia, as common metabolic conditions, have rarely been reported to affect the immune responses to the hepatitis B vaccine. Our study found that higher high-density lipoprotein (HDL) level showed a significant relationship with positive anti-HBs results (cOR = 1.479, 95% CI: 1.150, 1.901, p = 0.002; aOR = 1.304, 95% CI: 1.006, 1.691, p = 0.045), especially in individuals aged 18- to 40-year-old, female, smoking more than 100 cigarettes in life, and drinking more than 12 times every year. Lower low-density lipoprotein (LDL) level was associated with a negative anti-HBs result among participants aged 18- to 40-year-old, and participants who were obese. Higher level of HDL and lower level of LDL may be protective factors of better immune effect of hepatitis B vaccine. More research should be conducted to investigate the influence of the cholesterol level on the immune responses to the hepatitis B vaccine, and more in-depth research should be performed to uncover the mechanism.

2.
Chempluschem ; 86(9): 1307-1315, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34519445

RESUMEN

Integrating electrolytic hydrogen production from water with thermodynamically more favorable aqueous organic oxidation reactions is highly desired, because it can enhance the energy conversion efficiency in relation to traditional water electrolysis, and produce value-added chemicals instead of oxygen at the anode. In this Minireview, we introduce some key considerations for anodic auxiliary electrosynthesis and outline three types of electrocatalytic organic reactions including biomass derivative, alcohol and amine oxidation reactions, which can boost cathodic hydrogen generation. Furthermore, frequently used noble-metal-free electrocatalysts are classified into nickel-based, cobalt-based, other transition-metal-based and bimetallic electrocatalysts. The preparation methods of these catalysts and their performance towards electrochemical oxidation reactions are also discussed in detail. We specifically highlight the importance of redox active sites on the surface of the electrocatalysts, which act as electron mediators to promote oxidation reactions. Finally, the current challenges and future developments in this emerging field are also discussed.

3.
ACS Omega ; 4(26): 21998-22007, 2019 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-31891080

RESUMEN

Indoor environmental quality directly affects the life quality and health of human beings, and therefore, it is highly vital to eliminate the volatile organic compounds especially formaldehyde (HCHO), which is regarded as one of the most common harmful pollutants in indoor air. Hydroxyapatite (HAP)-supported Pt (Pt/HAP) catalysts with a low content of Pt (0.2 wt %) obtained via hydrothermal and chemical reduction processes could effectively remove gaseous HCHO from the indoor environment at room temperature. The influence of modifier in the preparation on the catalyst activity was investigated. The HAP and HAP modified by sodium citrate and hexamethylenetetramine-supported 0.2 wt % Pt could completely decompose HCHO into CO2 and water, while HAP modified by sodium dodecyl-sulfate-supported Pt removed HCHO primarily via adsorption. The HAP modified by the sodium citrate catalyst exhibited superior catalytic performance of HCHO compared to the HAP and HAP modified by hexamethylenetetramine and sodium dodecyl-sulfate-supported Pt catalysts, which was mainly because of its higher surface Ca/P ratio providing more Lewis acidic sites (Ca2+) for co-operational capture of HCHO molecules and a larger amount of active oxygen species. Our results indicate that an optimized combination of functional supports and low-content noble metal nanoparticles could be a route to fabricate effective room-temperature catalysts for potential application in indoor air purification.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA